Skip to main content

Identification of lncRNAs Using Computational and Experimental Approaches

  • Chapter
  • First Online:
  • 1776 Accesses

Abstract

Over the last decade, we have been illuminated by the startling discovery that many long noncoding RNAs (lncRNAs) are implicated in diverse and substantial biological processes. The identification of most lncRNAs to date has been unintentional and was mainly from subtractive hybridization or mutagenesis screening, initially aimed to identify protein-coding genes of interest. However, the characterization of lncRNAs and their acceptance as important regulators of many developmental and biological pathways have led to strategies specific to their isolation. Experimental methodologies to identify lncRNAs include RNA sequencing, lncRNA-specific microarray, and RNA-immunoprecipitation by taking advantage of their association with known RNA-binding proteins. The past decade has also generated a significant number of EST (expressed sequence tag)-based transcriptome databases which enabled computational methodologies to target their isolation. This chapter discusses several current and powerful computational and experimental approaches to identify lncRNAs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ChIP:

Chromatin immunoprecipitation

COOLAIR:

Cold-induced long antisense intragenic RNA

DHFR:

Dihydrofolate reductase

DRS:

Direct RNA sequencing

FLC:

Flowering locus C

Gas5:

Growth arrest–specific 5

H3K4me3:

Trimethylation of lysine 4 of histone H3

H3K36me3:

Trimethylation of lysine 36 of histone H3

lincRNAs:

Large intervening noncoding RNAs

lncRNA:

Long noncoding RNA

PRC2:

Polycomb repressive complex 2

RNA-IP:

RNA-immunoprecipitation

SRA:

Steroid receptor RNA activator

TUs:

Transcript units

Xist:

X-inactive specific transcript

References

  • Amaral PP, Clark MB, Gascoigne DK, Dinger ME, Mattick JS (2011) lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 39 (Database issue):D146-151. doi:gkq1138 [pii] 10.1093/nar/gkq1138

    Google Scholar 

  • Au PC, Zhu QH, Dennis ES, Wang MB (2011) Long non-coding RNA-mediated mechanisms independent of the RNAi pathway in animals and plants. RNA Biol 8(3):14382 [pii] 10.1093/nar/gkq1138

    Article  Google Scholar 

  • Babak T, Blencowe BJ, Hughes TR (2005) A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription. BMC Genomics 6:104. doi:1471-2164-6-104 [pii] 10.1186/1471-2164-6-104

    Article  PubMed  Google Scholar 

  • Badger JH, Olsen GJ (1999) CRITICA: coding region identification tool invoking comparative analysis. Mol Biol Evol 16(4):512–524

    PubMed  CAS  Google Scholar 

  • Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. Genes Dev 22(6):756–769. doi:22/6/756 [pii] 10.1101/gad.455708

    Article  PubMed  CAS  Google Scholar 

  • Ben Amor B, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, Hirsch J, Maizel A, Mallory A, Lucas A, Deragon JM, Vaucheret H, Thermes C, Crespi M (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19(1):57–69. doi:gr.080275.108 [pii] 10.1101/gr.080275.108

    Article  PubMed  CAS  Google Scholar 

  • Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, Swift S, Rastan S (1992) The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell 71(3):515–526. doi:0092-8674(92)90519-I [pii]

    Article  PubMed  CAS  Google Scholar 

  • Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38–44. doi:10.1038/349038a0

    Article  PubMed  CAS  Google Scholar 

  • Burge CB, Karlin S (1998) Finding the genes in genomic DNA. Curr Opin Struct Biol 8(3):346–354. doi:S0959-440X(98), 80069-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Chooniedass-Kothari S, Emberley E, Hamedani MK, Troup S, Wang X, Czosnek A, Hube F, Mutawe M, Watson PH, Leygue E (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566 (1–3):43–47. doi:10.1016/j.febslet.2004.03.104, S0014579304004387 [pii]

    Google Scholar 

  • Cloonan N, Forrest AR, Kolle G, Gardiner BB, Faulkner GJ, Brown MK, Taylor DF, Steptoe AL, Wani S, Bethel G, Robertson AJ, Perkins AC, Bruce SJ, Lee CC, Ranade SS, Peckham HE, Manning JM, McKernan KJ, Grimmond SM (2008) Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods 5(7):613–619. doi:nmeth.1223 [pii] 10.1038/nmeth.1223

    Article  PubMed  CAS  Google Scholar 

  • Dinger ME, Pang KC, Mercer TR, Mattick JS (2008) Differentiating protein-coding and noncoding RNA: challenges and ambiguities. PLoS Comput Biol 4(11):e1000176. doi:10.1371/journal.pcbi.1000176

    Article  PubMed  Google Scholar 

  • Dinger ME, Pang KC, Mercer TR, Crowe ML, Grimmond SM, Mattick JS (2009) NRED: a database of long noncoding RNA expression. Nucleic Acids Res 37 (Database issue):D122-126. doi:gkn617 [pii], 10.1093/nar/gkn617

    Google Scholar 

  • ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447(7146):799–816. doi:10.1038/nature05874

    Article  Google Scholar 

  • Erdmann VA, Szymanski M, Hochberg A, de Groot N, Barciszewski J (1999) Collection of mRNA-like non-coding RNAs. Nucleic Acids Res 27(1):192–195. doi:gkc101 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator. Genes Dev 20(11):1470–1484. doi:gad.1416106 [pii] 10.1101/gad.1416106

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471(7339):473–479. doi:nature09715 [pii] 10.1038/nature09715

    Article  PubMed  CAS  Google Scholar 

  • Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227. doi:nature07672 [pii] 10.1038/nature07672

    Article  PubMed  CAS  Google Scholar 

  • Hanada K, Zhang X, Borevitz JO, Li WH, Shiu SH (2007) A large number of novel coding small open reading frames in the intergenic regions of the Arabidopsis thaliana genome are transcribed and/or under purifying selection. Genome Res 17(5):632–640. doi:gr.5836207 [pii] 10.1101/gr.5836207

    Article  PubMed  CAS  Google Scholar 

  • Hatzigeorgiou AG, Fiziev P, Reczko M (2001) DIANA-EST: a statistical analysis. Bioinformatics 17(10):913–919

    Article  PubMed  CAS  Google Scholar 

  • He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense transcriptomes of human cells. Science 322(5909):1855–1857. doi:1163853 [pii] 10.1126/science.1163853

    Article  PubMed  CAS  Google Scholar 

  • Hiller M, Findeiss S, Lein S, Marz M, Nickel C, Rose D, Schulz C, Backofen R, Prohaska SJ, Reuter G, Stadler PF (2009) Conserved introns reveal novel transcripts in Drosophila melanogaster. Genome Res 19(7):1289–1300. doi:gr.090050.108 [pii] 10.1101/gr.090050.108

    Article  PubMed  CAS  Google Scholar 

  • Hirsch J, Lefort V, Vankersschaver M, Boualem A, Lucas A, Thermes C, d’Aubenton-Carafa Y, Crespi M (2006) Characterization of 43 non-protein-coding mRNA genes in Arabidopsis, including the MIR162a-derived transcripts. Plant Physiol 140(4):1192–1204. doi:pp.105.073817 [pii] 10.1104/pp.105.073817

    Article  PubMed  CAS  Google Scholar 

  • Hung T, Wang Y, Lin MF, Koegel AK, Kotake Y, Grant GD, Horlings HM, Shah N, Umbricht C, Wang P, Kong B, Langerod A, Borresen-Dale AL, Kim SK, van de Vijver M, Sukumar S, Whitfield ML, Kellis M, Xiong Y, Wong DJ, Chang HY (2011) Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet. doi:ng.848 [pii] 10.1038/ng.848

    Google Scholar 

  • Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16(8):1478–1487. doi:rna.1951310 [pii] 10.1261/rna.1951310

    Article  PubMed  CAS  Google Scholar 

  • Khachane AN, Harrison PM (2010) Mining mammalian transcript data for functional long non-coding RNAs. PLoS One 5(4):e10316. doi:10.1371/journal.pone.0010316

    Article  PubMed  Google Scholar 

  • Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, Thomas K, Presser A, Bernstein BE, van Oudenaarden A, Regev A, Lander ES, Rinn JL (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA 106(28):11667–11672. doi:0904715106 [pii] 10.1073/pnas.0904715106

    Article  PubMed  CAS  Google Scholar 

  • Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35(Web Server issue):W345–349. doi:35/suppl_2/W345 [pii] 10.1093/nar/gkm391

    Article  PubMed  Google Scholar 

  • Kramer RA, Andersen N (1980) Isolation of yeast genes with mRNA levels controlled by phosphate concentration. Proc Natl Acad Sci USA 77(11):6541–6545

    Article  PubMed  CAS  Google Scholar 

  • Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T (2008) Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14(12):2580–2596. doi:rna.1351608 [pii] 10.1261/rna.1351608

    Article  PubMed  CAS  Google Scholar 

  • Li CX, Liu JQ, Yu JJ, Zhao Q, Ao GM (2001) Cloning and expression analysis of pollen-specific cDNA ZM401 from Zea mays. J Agr Biotechnol 9(4):374–377

    Google Scholar 

  • Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW (2006) Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet 38(1):124–129. doi:ng1704 [pii] 10.1038/ng1704

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Gough J, Rost B (2006) Distinguishing protein-coding from non-coding RNAs through support vector machines. PLoS Genet 2(4):e29. doi:10.1371/journal.pgen.0020029

    Article  PubMed  Google Scholar 

  • Liu C, Bai B, Skogerbo G, Cai L, Deng W, Zhang Y, Bu D, Zhao Y, Chen R (2005) NONCODE: an integrated knowledge database of non-coding RNAs. Nucleic Acids Res 33 (Database issue):D112-115. doi:33/suppl_1/D112 [pii] 10.1093/nar/gki041

    Google Scholar 

  • Lottaz C, Iseli C, Jongeneel CV, Bucher P (2003) Modeling sequencing errors by combining Hidden Markov models. Bioinformatics 19(Suppl 2):103–112

    Article  Google Scholar 

  • Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, Agarwal A, Auerbach R, Rozowsky J, Cheng C, Kato M, Miller DM, Slack F, Snyder M, Waterston RH, Reinke V, Gerstein MB (2011) Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res 21(2):276–285. doi:gr.110189.110 [pii] 10.1101/gr.110189.110

    Article  PubMed  CAS  Google Scholar 

  • Lukashin AV, Borodovsky M (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26(4):1107–1115. doi:gkb200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • MacIntosh GC, Wilkerson C, Green PJ (2001) Identification and analysis of Arabidopsis expressed sequence tags characteristic of non-coding RNAs. Plant Physiol 127(3):765–776

    Article  PubMed  CAS  Google Scholar 

  • Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engstrom PG, Lenhard B, Aturaliya RN, Batalov S, Beisel KW, Bult CJ, Fletcher CF, Forrest AR, Furuno M, Hill D, Itoh M, Kanamori-Katayama M, Katayama S, Katoh M, Kawashima T, Quackenbush J, Ravasi T, Ring BZ, Shibata K, Sugiura K, Takenaka Y, Teasdale RD, Wells CA, Zhu Y, Kai C, Kawai J, Hume DA, Carninci P, Hayashizaki Y (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2(4):e62. doi:10.1371/journal.pgen.0020062

    Article  PubMed  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445(7128):666–670. doi:nature05519 [pii] 10.1038/nature05519

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5(4):316–323. doi:10.1038/nrg1321 nrg1321 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Mattick JS, Makunin IV (2005) Small regulatory RNAs in mammals. Hum Mol Genet 14(1):R121–132. doi:14/suppl_1/R121 [pii] 10.1093/hmg/ddi101

    Article  PubMed  CAS  Google Scholar 

  • Mignone F, Grillo G, Liuni S, Pesole G (2003) Computational identification of protein coding potential of conserved sequence tags through cross-species evolutionary analysis. Nucleic Acids Res 31(15):4639–4645

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. doi:nmeth.1226 [pii] 10.1038/nmeth.1226

    Article  PubMed  CAS  Google Scholar 

  • Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P (2008) The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322(5908):1717–1720. doi:1163802 [pii] 10.1126/science.1163802

    Article  PubMed  CAS  Google Scholar 

  • Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation pathways. Science 320(5881):1336–1341. doi:320/5881/1336 [pii] 10.1126/science.1157676

    Article  PubMed  CAS  Google Scholar 

  • Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12(2):87–98. doi:nrg2934 [pii] 10.1038/nrg2934

    Article  PubMed  CAS  Google Scholar 

  • Ozsolak F, Platt AR, Jones DR, Reifenberger JG, Sass LE, McInerney P, Thompson JF, Bowers J, Jarosz M, Milos PM (2009) Direct RNA sequencing. Nature 461(7265):814–818. doi:nature08390 [pii] 10.1038/nature08390

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1955) A small particulate component of the cytoplasm. J Biophys Biochem Cytol 1(1):59–68

    Article  PubMed  CAS  Google Scholar 

  • Palade GE (1958) Microsomal particles and protein synthesis. Pergamon Press, London

    Google Scholar 

  • Pang KC, Frith MC, Mattick JS (2006) Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 22(1):1–5. doi:S0168-9525(05), 00322-7 [pii] 10.1016/j.tig.2005.10.003

    Article  PubMed  CAS  Google Scholar 

  • Pang KC, Stephen S, Dinger ME, Engstrom PG, Lenhard B, Mattick JS (2007) RNAdb 2.0--an expanded database of mammalian non-coding RNAs. Nucleic Acids Res 35 (Database issue):D178-182. doi:gkl926 [pii] 10.1093/nar/gkl926

    Google Scholar 

  • Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N (1996) Requirement for Xist in X chromosome inactivation. Nature 379(6561):131–137. doi:10.1038/379131a0

    Article  PubMed  CAS  Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17(5):556–565. doi:gr.6036807 [pii] 10.1101/gr.6036807

    Article  PubMed  CAS  Google Scholar 

  • Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:S0092-8674(07), 00659-9 [pii] 10.1016/j.cell.2007.05.022

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Trelles F, Tarrio R, Ayala FJ (2006) Origins and evolution of spliceosomal introns. Annu Rev Genet 40:47–76. doi:10.1146/annurev.genet.40.110405.090625

    Article  PubMed  CAS  Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA 99(4):1915–1920. doi:10.1073/pnas.022664799 022664799 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rose D, Hiller M, Schutt K, Hackermuller J, Backofen R, Stadler PF (2011) Computational discovery of human coding and non-coding transcripts with conserved splice sites. Bioinformatics. doi:btr314 [pii] 10.1093/bioinformatics/btr314

    Google Scholar 

  • Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of mammalian cells. Cell 54(6):787–793. doi:S0092-8674(88), 91065-3 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Shimizu K, Adachi J, Muraoka Y (2006) ANGLE: a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA. J Bioinform Comput Biol 4(3):649–664. doi:S0219720006002260 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker DD, Schadt EE, Armour CD, He YD, Garrett-Engele P, McDonagh PD, Loerch PM, Leonardson A, Lum PY, Cavet G, Wu LF, Altschuler SJ, Edwards S, King J, Tsang JS, Schimmack G, Schelter JM, Koch J, Ziman M, Marton MJ, Li B, Cundiff P, Ward T, Castle J, Krolewski M, Meyer MR, Mao M, Burchard J, Kidd MJ, Dai H, Phillips JW, Linsley PS, Stoughton R, Scherer S, Boguski MS (2001) Experimental annotation of the human genome using microarray technology. Nature 409(6822):922–927. doi:10.1038/35057141

    Article  PubMed  CAS  Google Scholar 

  • Solda G, Makunin IV, Sezerman OU, Corradin A, Corti G, Guffanti A (2009) An Ariadne’s thread to the identification and annotation of noncoding RNAs in eukaryotes. Brief Bioinform 10(5):475–489. doi:bbp022 [pii] 10.1093/bib/bbp022

    Article  PubMed  CAS  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10 11–12. doi:gb-2006–7-s1-s10 [pii] 10.1186/gb-2006–7-s1-s10

    Article  Google Scholar 

  • Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA, Rasmussen MD, Roy S, Deoras AN, Ruby JG, Brennecke J, Hodges E, Hinrichs AS, Caspi A, Paten B, Park SW, Han MV, Maeder ML, Polansky BJ, Robson BE, Aerts S, van Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M, Hahn MW, Park Y, Dewey CN, Pachter L, Kent WJ, Haussler D, Lai EC, Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D, Celniker SE, Gelbart WM, Kellis M (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450(7167):219–232. doi:nature06340 [pii] 10.1038/nature06340

    Article  PubMed  CAS  Google Scholar 

  • Stolc V, Samanta MP, Tongprasit W, Sethi H, Liang S, Nelson DC, Hegeman A, Nelson C, Rancour D, Bednarek S, Ulrich EL, Zhao Q, Wrobel RL, Newman CS, Fox BG, Phillips GN Jr, Markley JL, Sussman MR (2005) Identification of transcribed sequences in Arabidopsis thaliana by using high-resolution genome tiling arrays. Proc Natl Acad Sci USA 102(12):4453–4458. doi:0408203102 [pii] 10.1073/pnas.0408203102

    Article  PubMed  CAS  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462(7274):799–802. doi:nature08618 [pii] 10.1038/nature08618

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29(3):288–299. doi:10.1002/bies.20544

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK, Kurokawa R (2008) Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454(7200):126–130. doi:nature06992 [pii] 10.1038/nature06992

    Article  PubMed  CAS  Google Scholar 

  • Washietl S, Findeiss S, Muller SA, Kalkhof S, von Bergen M, Hofacker IL, Stadler PF, Goldman N (2011) RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. RNA 17(4):578–594. doi:rna.2536111 [pii] 10.1261/rna.2536111

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Yamamoto M (1994) S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78(3):487–498. doi:0092–8674(94)90426-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wierzbicki AT, Haag JR, Pikaard CS (2008) Noncoding transcription by RNA polymerase Pol IVb/Pol V mediates transcriptional silencing of overlapping and adjacent genes. Cell 135(4):635–648. doi:S0092-8674(08), 01192-6 [pii] 10.1016/j.cell.2008.09.035

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243. doi:nature07002 [pii] 10.1038/nature07002

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Ganem D (2010) Making sense of antisense: seemingly noncoding RNAs antisense to the master regulator of Kaposi’s sarcoma-associated herpesvirus lytic replication do not regulate that transcript but serve as mRNAs encoding small peptides. J Virol 84(11):5465–5475. doi:JVI.02705-09 [pii] 10.1128/JVI.02705-09

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Guo G, Hu X, Zhang Y, Li Q, Li R, Zhuang R, Lu Z, He Z, Fang X, Chen L, Tian W, Tao Y, Kristiansen K, Zhang X, Li S, Yang H, Wang J (2010) Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Res 20(5):646–654. doi:gr.100677.109 [pii] 10.1101/gr.100677.109

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322(5902):750–756. doi:322/5902/750 [pii] 10.1126/science.1163045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly supported by an Australian Research Council Future Fellowship (FT0991956). We thank Dr. Ming-Bo Wang for his assistance in the revision of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phil Chi Khang Au .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Au, P.C.K., Zhu, QH. (2012). Identification of lncRNAs Using Computational and Experimental Approaches. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_13

Download citation

Publish with us

Policies and ethics