Skip to main content

Targeted Methods to Improve Small RNA Profiles Generated by Deep Sequencing

  • Chapter
  • First Online:
Regulatory RNAs

Abstract

Several recent reviews expertly address the relative merits of different approaches to preparation and analysis of deep-sequenced small RNA libraries. Here, we focus on an array of protocols and tools with the intention of assisting researchers in improving short RNA profiles constructed with second-generation sequencing. This includes methods and commentaries on the preparation of sequencing-caliber immunoprecipitation RNA libraries, techniques for targeting different populations of RNAs with distinct 5′- and 3′-ends, reduction of adapter dimers in libraries, and dealing with the underappreciated problem of genomic cross-mapping of similar miRNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AGO:

Argonaute

BAP:

Bacterial alkaline phosphatase

bp:

Base pairs

CAGE:

Cap analysis gene expression

cDNA:

Complementary DNA

CLIP-seq:

Cross-linked immunoprecipitation and deep sequencing of RNAs

HITS-CLIP:

High-throughput sequencing of RNAs isolated by cross-linked immunoprecipitation

IP:

Immunoprecipitation

LNA:

Locked nucleic acid

miRNA:

microRNA

mRNA:

Messenger RNA

nt:

Nucleotides

PAR-CLIP:

Photoactivatable-ribonucleoside-enhanced cross-linking and immunoprecipitation

PASR:

Promoter-associated small RNA

piRNA:

Piwi-interacting RNA

qPCR:

Quantitative real-time PCR

RISC:

RNA-induced silence complex

siRNA:

Small interfering RNA

T4 PNK:

T4 polynucleotide kinase

TAP:

Tobacco acid pyrophosphatase

TASR:

Termini-associated small RNA

TEX:

TerminatorTM 5′-phosphate-dependent exonuclease

UTR:

Untranslated region

References

  • Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project (2009) Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457(7232):1028–1032. doi:nature07759 [pii] 10.1038/nature07759

    Article  Google Scholar 

  • Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A (2011) Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 12(2):R18. doi:gb-2011-12-2-r18 [pii] 10.1186/gb-2011-12-2-r18

    Article  PubMed  CAS  Google Scholar 

  • Azuma-Mukai A, Oguri H, Mituyama T, Qian ZR, Asai K, Siomi H, Siomi MC (2008) Characterization of endogenous human Argonautes and their miRNA partners in RNA silencing. Proc Natl Acad Sci USA 105(23):7964–7969. doi:0800334105 [pii] 10.1073/pnas.0800334105

    Article  PubMed  CAS  Google Scholar 

  • Baker M (2010) MicroRNA profiling: separating signal from noise. Nat Methods 7(9):687–692. doi:nmeth0910-687 [pii] 10.1038/nmeth0910-687

    Article  PubMed  CAS  Google Scholar 

  • Bekel T, Henckel K, Kuster H, Meyer F, Mittard Runte V, Neuweger H, Paarmann D, Rupp O, Zakrzewski M, Puhler A, Stoye J, Goesmann A (2009) The Sequence Analysis and Management System – SAMS-2.0: data management and sequence analysis adapted to changing requirements from traditional sanger sequencing to ultrafast sequencing technologies. J Biotechnol 140(1–2):3–12 doi: 10.1016/j.jbiotec.2009.01.006

    Article  PubMed  CAS  Google Scholar 

  • Buchold GM, Coarfa C, Kim J, Milosavljevic A, Gunaratne PH, Matzuk MM (2010) Analysis of microRNA expression in the prepubertal testis. PLoS One 5(12):e15317. doi:10.1371/journal.pone.0015317

    Article  PubMed  CAS  Google Scholar 

  • Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y, Daub CO (2010) A comprehensive survey of 3′ animal miRNA modification events and a possible role for 3′ adenylation in modulating miRNA targeting effectiveness. Genome Res 20(10):1398–1410. doi:gr.106054.110 [pii] 10.1101/gr.106054.110

    Article  PubMed  CAS  Google Scholar 

  • Burroughs AM, Ando Y, Hoon ML, Tomaru Y, Suzuki H, Hayashizaki Y, Daub CO (2011) Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol 8(1):158–177. doi:14300 [pii]10.4161/rna.8.1.14300

    Article  PubMed  CAS  Google Scholar 

  • Carninci P (2010) RNA dust: where are the genes? DNA Res 17(2):51–59. doi:dsq006 [pii] 10.1093/dnares/dsq006

    Article  PubMed  CAS  Google Scholar 

  • Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460(7254):479–486. doi:nature08170 [pii] 10.1038/nature08170

    PubMed  CAS  Google Scholar 

  • Dai M, Thompson RC, Maher C, Contreras-Galindo R, Kaplan MH, Markovitz DM, Omenn G, Meng F (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics 11(Suppl 4):S7. doi:1471–2164–11-S4-S7 [pii] 10.1186/1471–2164–11-S4-S7

    Article  PubMed  Google Scholar 

  • de Hoon MJ, Taft RJ, Hashimoto T, Kanamori-Katayama M, Kawaji H, Kawano M, Kishima M, Lassmann T, Faulkner GJ, Mattick JS, Daub CO, Carninci P, Kawai J, Suzuki H, Hayashizaki Y (2010) Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res 20(2):257–264. doi:gr.095273.109 [pii] 10.1101/gr.095273.109

    Article  PubMed  Google Scholar 

  • Ebhardt HA, Tsang HH, Dai DC, Liu Y, Bostan B, Fahlman RP (2009) Meta-analysis of small RNA-sequencing errors reveals ubiquitous post-transcriptional RNA modifications. Nucleic Acids Res 37(8):2461–2470. doi:gkp093 [pii] 10.1093/nar/gkp093

    Article  PubMed  CAS  Google Scholar 

  • Ender C, Meister G (2010) Argonaute proteins at a glance. J Cell Sci 123(Pt 11):1819–1823. doi:123/11/1819 [pii] 10.1242/jcs.055210

    Article  PubMed  CAS  Google Scholar 

  • Ender C, Krek A, Friedlander MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with microRNA-like functions. Mol Cell 32(4):519–528. doi:S1097-2765(08), 00733-8 [pii] 10.1016/j.molcel.2008.10.017

    Article  PubMed  CAS  Google Scholar 

  • Faulkner GJ, Forrest AR, Chalk AM, Schroder K, Hayashizaki Y, Carninci P, Hume DA, Grimmond SM (2008) A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics 91(3):281–288. doi:S0888-7543(07), 00279-0 [pii] 10.1016/j.ygeno.2007.11.003

    Article  PubMed  CAS  Google Scholar 

  • Friedlander MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26(4):407–415. doi:nbt1394 [pii] 10.1038/nbt1394

    Article  PubMed  Google Scholar 

  • Goff LA, Davila J, Swerdel MR, Moore JC, Cohen RI, Wu H, Sun YE, Hart RP (2009) Ago2 immunoprecipitation identifies predicted microRNAs in human embryonic stem cells and neural precursors. PLoS One 4(9):e7192. doi:10.1371/journal.pone.0007192

    Article  PubMed  Google Scholar 

  • Hackenberg M, Sturm M, Langenberger D, Falcon-Perez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37 (Web Server issue):W68–76. doi:gkp347 [pii] 10.1093/nar/gkp347

    Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141. doi:S0092-8674(10)00245-X [pii] 10.1016/j.cell.2010.03.009

    Article  PubMed  CAS  Google Scholar 

  • Halic M, Moazed D (2010) Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140(4):504–516. doi:S0092-8674(10), 00020-6 [pii] 10.1016/j.cell.2010.01.019

    Article  PubMed  CAS  Google Scholar 

  • Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5(3):235–237. doi:nmeth.1184 [pii] 10.1038/nmeth.1184

    Article  PubMed  CAS  Google Scholar 

  • Haussecker D, Cao D, Huang Y, Parameswaran P, Fire AZ, Kay MA (2008) Capped small RNAs and MOV10 in human hepatitis delta virus replication. Nat Struct Mol Biol 15(7):714–721. doi:nsmb.1440 [pii] 10.1038/nsmb.1440

    Article  PubMed  CAS  Google Scholar 

  • Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4):673–695. doi:rna.2000810 [pii] 10.1261/rna.2000810

    Article  PubMed  CAS  Google Scholar 

  • Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J, Kim VN (2009) TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138(4):696–708. doi:S0092-8674(09), 00964-7 [pii] 10.1016/j.cell.2009.08.002

    Article  PubMed  CAS  Google Scholar 

  • Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25. doi:1471-2164-7-25 [pii] 10.1186/1471-2164-7-25

    Article  PubMed  Google Scholar 

  • Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, Yu C, Booth BW, Zhang D, Wan KH, Yang L, Boley N, Andrews J, Kaufman TC, Graveley BR, Bickel PJ, Carninci P, Carlson JW, Celniker SE (2011) Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res 21(2):182–192. doi:gr.112466.110 [pii] 10.1101/gr.112466.110

    Article  PubMed  CAS  Google Scholar 

  • Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32. doi:nrm2321 [pii] 10.1038/nrm2321

    Article  PubMed  CAS  Google Scholar 

  • Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP (2009) Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11(9):1157–1163. doi:ncb1931 [pii] 10.1038/ncb1931

    Article  PubMed  CAS  Google Scholar 

  • Kanamori-Katayama M, Itoh M, Kawaji H, Lassmann T, Katayama S, Kojima M, Bertin N, Kaiho A, Ninomiya N, Daub CO, Carninci P, Forrest AR, Hayashizaki Y (2011) Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Res. doi:gr.115469.110 [pii] 10.1101/gr.115469.110

    Google Scholar 

  • Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL, Bell I, Cheung E, Drenkow J, Dumais E, Patel S, Helt G, Ganesh M, Ghosh S, Piccolboni A, Sementchenko V, Tammana H, Gingeras TR (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316(5830):1484–1488. doi:1138341 [pii] 10.1126/science.1138341

    Article  PubMed  CAS  Google Scholar 

  • Kapranov P, Ozsolak F, Kim SW, Foissac S, Lipson D, Hart C, Roels S, Borel C, Antonarakis SE, Monaghan AP, John B, Milos PM (2010) New class of gene-termini-associated human RNAs suggests a novel RNA copying mechanism. Nature 466(7306):642–646. doi:nature09190 [pii] 10.1038/nature09190

    Article  PubMed  CAS  Google Scholar 

  • Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T (2009) Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23(4):433–438. doi:23/4/433 [pii] 10.1101/gad.1761509

    Article  PubMed  CAS  Google Scholar 

  • Kawahara Y, Zinshteyn B, Sethupathy P, Iizasa H, Hatzigeorgiou AG, Nishikura K (2007) Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315(5815):1137–1140. doi:315/5815/1137 [pii] 10.1126/science.1138050

    Article  PubMed  CAS  Google Scholar 

  • Kawano M, Kawazu C, Lizio M, Kawaji H, Carninci P, Suzuki H, Hayashizaki Y (2010) Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. Biotechniques 49(4):751–755. doi:000113516 [pii] 10.2144/000113516

    Article  PubMed  CAS  Google Scholar 

  • Kim YK, Heo I, Kim VN (2010) Modifications of small RNAs and their associated proteins. Cell 143(5):703–709. doi:S0092-8674(10), 01298-5 [pii] 10.1016/j.cell.2010.11.018

    Article  PubMed  CAS  Google Scholar 

  • Kucho K, Yoneda H, Harada M, Ishiura M (2004) Determinants of sensitivity and specificity in spotted DNA microarrays with unmodified oligonucleotides. Genes Genet Syst 79(4):189–197. doi:JST.JSTAGE/ggs/79.189 [pii] 10.1266/ggs.79.189

    Article  PubMed  CAS  Google Scholar 

  • Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414. doi:S0092-8674(07), 00604-6 [pii] 10.1016/j.cell.2007.04.040

    Article  PubMed  CAS  Google Scholar 

  • Lassmann T, Hayashizaki Y, Daub CO (2009) TagDust – a program to eliminate artifacts from next generation sequencing data. Bioinformatics 25(21):2839–2840. doi:btp527 [pii] 10.1093/bioinformatics/btp527

    Article  PubMed  CAS  Google Scholar 

  • Lassmann T, Hayashizaki Y, Daub CO (2011) SAMStat: monitoring biases in next generation sequencing data. Bioinformatics 27(1):130–131. doi:btq614 [pii] 10.1093/bioinformatics/btq614

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649. doi:23/22/2639 [pii] 10.1101/gad.1837609

    Article  PubMed  CAS  Google Scholar 

  • Lee LW, Zhang S, Etheridge A, Ma L, Martin D, Galas D, Wang K (2010) Complexity of the microRNA repertoire revealed by next-generation sequencing. RNA 16(11):2170–2180. doi:rna.2225110 [pii] 10.1261/rna.2225110

    Article  PubMed  CAS  Google Scholar 

  • Lehrbach NJ, Armisen J, Lightfoot HL, Murfitt KJ, Bugaut A, Balasubramanian S, Miska EA (2009) LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 16(10):1016–1020. doi:nsmb.1675 [pii] 10.1038/nsmb.1675

    Article  PubMed  CAS  Google Scholar 

  • Linsen SE, de Wit E, Janssens G, Heater S, Chapman L, Parkin RK, Fritz B, Wyman SK, de Bruijn E, Voest EE, Kuersten S, Tewari M, Cuppen E (2009) Limitations and possibilities of small RNA digital gene expression profiling. Nat Methods 6(7):474–476. doi:nmeth0709-474 [pii] 10.1038/nmeth0709-474

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Shedge V (2011) Construction of small RNA cDNA libraries for high-throughput sequencing. Methods Mol Biol 729:141–152. doi:10.1007/978-1-61779-065-2_9

    Article  PubMed  CAS  Google Scholar 

  • McCormick KP, Willmann MR, Meyers BC (2011) Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence 2(1):2. doi:1758-907X-2-2 [pii] 10.1186/1758-907X-2-2

    Article  PubMed  CAS  Google Scholar 

  • Metzker ML (2010) Sequencing technologies – the next generation. Nat Rev Genet 11(1):31–46. doi:nrg2626 [pii] 10.1038/nrg2626

    Article  PubMed  CAS  Google Scholar 

  • Morin RD, O’Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, McDonald H, Zeng T, Hirst M, Eaves CJ, Marra MA (2008) Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res 18(4):610–621. doi:gr.7179508 [pii] 10.1101/gr.7179508

    Article  PubMed  CAS  Google Scholar 

  • Morin RD, Zhao Y, Prabhu AL, Dhalla N, McDonald H, Pandoh P, Tam A, Zeng T, Hirst M, Marra M (2010) Preparation and analysis of microRNA libraries using the Illumina massively parallel sequencing technology. Methods Mol Biol 650:173–199. doi:10.1007/978-1-60761-769-3_14

    Article  PubMed  CAS  Google Scholar 

  • Munafo DB, Robb GB (2010) Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA. RNA 16(12):2537–2552. doi:rna.2242610 [pii] 10.1261/rna.2242610

    Article  PubMed  CAS  Google Scholar 

  • Pitt JN, Rajapakse I, Ferre-D’Amare AR (2010) SEWAL: an open-source platform for next-generation sequence analysis and visualization. Nucleic Acids Res 38(22):7908–7915. doi:gkq661 [pii] 10.1093/nar/gkq661

    Article  PubMed  CAS  Google Scholar 

  • Reid JG, Nagaraja AK, Lynn FC, Drabek RB, Muzny DM, Shaw CA, Weiss MK, Naghavi AO, Khan M, Zhu H, Tennakoon J, Gunaratne GH, Corry DB, Miller J, McManus MT, German MS, Gibbs RA, Matzuk MM, Gunaratne PH (2008) Mouse let-7 miRNA populations exhibit RNA editing that is constrained in the 5′-seed/cleavage/anchor regions and stabilize predicted mmu-let-7a:mRNA duplexes. Genome Res 18(10):1571–1581. doi:gr.078246.108 [pii] 10.1101/gr.078246.108

    Article  PubMed  CAS  Google Scholar 

  • Schulte JH, Marschall T, Martin M, Rosenstiel P, Mestdagh P, Schlierf S, Thor T, Vandesompele J, Eggert A, Schreiber S, Rahmann S, Schramm A (2010) Deep sequencing reveals differential expression of microRNAs in favorable versus unfavorable neuroblastoma. Nucleic Acids Res 38(17):5919–5928. doi:gkq342 [pii] 10.1093/nar/gkq342

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MJ, Chee M, Roth FP, Giaever G, Nislow C (2009) Quantitative phenotyping via deep barcode sequencing. Genome Res 19(10):1836–1842. doi:gr.093955.109 [pii] 10.1101/gr.093955.109

    Article  PubMed  CAS  Google Scholar 

  • Su RW, Lei W, Liu JL, Zhang ZR, Jia B, Feng XH, Ren G, Hu SJ, Yang ZM (2010) The integrative analysis of microRNA and mRNA expression in mouse uterus under delayed implantation and activation. PLoS One 5(11):e15513. doi:10.1371/journal.pone.0015513

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Glazov EA, Cloonan N, Simons C, Stephen S, Faulkner GJ, Lassmann T, Forrest AR, Grimmond SM, Schroder K, Irvine K, Arakawa T, Nakamura M, Kubosaki A, Hayashida K, Kawazu C, Murata M, Nishiyori H, Fukuda S, Kawai J, Daub CO, Hume DA, Suzuki H, Orlando V, Carninci P, Hayashizaki Y, Mattick JS (2009) Tiny RNAs associated with transcription start sites in animals. Nat Genet 41(5):572–578. doi:ng.312 [pii] 10.1038/ng.312

    Article  PubMed  CAS  Google Scholar 

  • Taft RJ, Simons C, Nahkuri S, Oey H, Korbie DJ, Mercer TR, Holst J, Ritchie W, Wong JJ, Rasko JE, Rokhsar DS, Degnan BM, Mattick JS (2010) Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans. Nat Struct Mol Biol 17(8):1030–1034. doi:nsmb.1841 [pii] 10.1038/nsmb.1841

    Article  PubMed  CAS  Google Scholar 

  • Thomas MF, Ansel KM (2010) Construction of small RNA cDNA libraries for deep sequencing. Methods Mol Biol 667:93–111. doi:10.1007/978-1-60761-811-9_7

    Article  PubMed  CAS  Google Scholar 

  • Tian G, Yin X, Luo H, Xu X, Bolund L, Zhang X (2010) Sequencing bias: comparison of different protocols of microRNA library construction. BMC Biotechnol 10:64. doi:1472-6750-10-64 [pii] 10.1186/1472-6750-10-64

    Article  PubMed  Google Scholar 

  • Vigneault F, Sismour AM, Church GM (2008) Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods 5(9):777–779. doi:10.1038/nmeth.1244

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543. doi:nature06908 [pii] 10.1038/nature06908

    Article  PubMed  CAS  Google Scholar 

  • Willenbrock H, Salomon J, Sokilde R, Barken KB, Hansen TN, Nielsen FC, Moller S, Litman T (2009) Quantitative miRNA expression analysis: comparing microarrays with next-generation sequencing. RNA 15(11):2028–2034. doi:rna.1699809 [pii] 10.1261/rna.1699809

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Takahiro Nishibu, Ryo Ukekawa, Taku Funakoshi, and Tsutomu Kurokawa of Wako Pure Chemical Industries, Ltd. and Carsten Daub of the RIKEN Omics Science Center (OSC) for their collaboration. This work was supported by a research grant for the RIKEN OSC from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) to YH and a grant for the Innovative Cell Biology by Innovative Technology (Cell Innovation Program) from the MEXT to YH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Maxwell Burroughs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ando, Y., Burroughs, A.M., Kawano, M., de Hoon, M.J.L., Hayashizaki, Y. (2012). Targeted Methods to Improve Small RNA Profiles Generated by Deep Sequencing. In: Mallick, B., Ghosh, Z. (eds) Regulatory RNAs. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22517-8_10

Download citation

Publish with us

Policies and ethics