Skip to main content

Unusual Mitochondrial Genomes and Genes

  • Chapter
  • First Online:

Abstract

The mitochondrial genome is amazingly diverse across eukaryotes; and the more broadly we explore, the more diversity we uncover. Among recently studied mitochondrial DNAs (mtDNAs), those of Amoebidium, diplonemids, and dinoflagellates are particularly remarkable. The most striking mtDNA features pertain to genome architecture (the shape and number of chromosomes), noncoding regions, gene structure, and gene expression. Surprisingly, several of these unusual features are shared between the three organismal groups, although these protists are members of three different eukaryotic lineages, Opisthokonta (including animals and fungi), Euglenozoa, and Alveolata. Here, we describe the deviant character states of mtDNAs from these protists in comparison with what is seen frequently in other eukaryotes, and we make inferences on the forces that shaped the evolution of these departures from the “norm.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams KL, Ong HC, Palmer JD (2001) Mitochondrial gene transfer in pieces: fission of the ribosomal protein gene rpl2 and partial or complete gene transfer to the nucleus. Mol Biol Evol 18:2289–2297

    PubMed  CAS  Google Scholar 

  • Adams KL, Qiu YL, Stoutemyer M, Palmer JD (2002) Punctuated evolution of mitochondrial gene content: high and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci U S A 99:9905–9912

    PubMed  CAS  Google Scholar 

  • Alfonzo JD, Blanc V, Estevez AM, Rubio MA, Simpson L (1999) C to U editing of the anticodon of imported mitochondrial tRNA(Trp) allows decoding of the UGA stop codon in Leishmania tarentolae. EMBO J 18:7056–7062

    PubMed  CAS  Google Scholar 

  • Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B Biol Sci 358:19–37; discussion 37–18

    PubMed  CAS  Google Scholar 

  • Alverson AJ, Wei X, Rice DW, Stern DB, Barry K, Palmer JD (2010) Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol Biol Evol 27:1436–1448

    PubMed  CAS  Google Scholar 

  • Anderson S et al (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    PubMed  CAS  Google Scholar 

  • Armstrong MR, Blok VC, Phillips MS (2000) A multipartite mitochondrial genome in the potato cyst nematode Globodera pallida. Genetics 154:181–192

    PubMed  CAS  Google Scholar 

  • Awata H, Noto T, Endoh H (2005) Differentiation of somatic mitochondria and the structural changes in mtDNA during development of the dicyemid Dicyema japonicum (Mesozoa). Mol Genet Genomics 273:441–449

    PubMed  CAS  Google Scholar 

  • Bartoszewski G, Katzir N, Havey MJ (2004) Organization of repetitive DNAs and the genomic regions carrying ribosomal RNA, cob, and atp9 genes in the cucurbit mitochondrial genomes. Theor Appl Genet 108:982–992

    PubMed  CAS  Google Scholar 

  • Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290

    PubMed  CAS  Google Scholar 

  • Bensasson D, Zhang D, Hartl DL, Hewitt GM (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends Ecol Evol 16:314–321

    PubMed  Google Scholar 

  • Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201

    PubMed  CAS  Google Scholar 

  • Bock H, Brennicke A, Schuster W (1994) Rps3 and rpl16 genes do not overlap in Oenothera mitochondria: GTG as a potential translation initiation codon in plant mitochondria? Plant Mol Biol 24:811–818

    PubMed  CAS  Google Scholar 

  • Boer PH, Gray MW (1988) Scrambled ribosomal RNA gene pieces in Chlamydomonas reinhardtii mitochondrial DNA. Cell 55:399–411

    PubMed  CAS  Google Scholar 

  • Bonen L (1993) Trans-splicing of pre-mRNA in plants, animals, and protists. FASEB J 7:40–46

    PubMed  CAS  Google Scholar 

  • Bonen L, Vogel J (2001) The ins and outs of group II introns. Trends Genet 17:322–331

    PubMed  CAS  Google Scholar 

  • Borst P, Grivell LA (1981) Small is beautiful–portrait of a mitochondrial genome. Nature 290:443–444

    PubMed  CAS  Google Scholar 

  • Bullerwell CE, Leigh J, Forget L, Lang BF (2003) A comparison of three fission yeast mitochondrial genomes. Nucleic Acids Res 31:759–768

    PubMed  CAS  Google Scholar 

  • Burger G, Plante I, Lonergan KM, Gray MW (1995) The mitochondrial DNA of the amoeboid protozoon, Acanthamoeba castellanii: complete sequence, gene content and genome organization. J Mol Biol 245:522–537

    PubMed  CAS  Google Scholar 

  • Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003a) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci U S A 100:892–897

    PubMed  CAS  Google Scholar 

  • Burger G, Gray MW, Lang BF (2003b) Mitochondrial genomes - anything goes. Trends Genet 19:709–716

    PubMed  CAS  Google Scholar 

  • Burger G, Lang BF, Braun HP, Marx S (2003c) The enigmatic mitochondrial ORF ymf39 codes for ATP synthase chain b. Nucleic Acids Res 31:2353–2360

    PubMed  CAS  Google Scholar 

  • Burger G, Nedelcu A (2011) Mitochondrial genomes of algae. In: Bock R, Knoop V (eds) Advances in Photosynthesis and Respiration. Springer, Berlin

    Google Scholar 

  • Burger G, Yan Y, Javadi P, Lang BF (2009) Group I-intron trans-splicing and mRNA editing in the mitochondria of placozoan animals. Trends Genet 25:381–386

    PubMed  CAS  Google Scholar 

  • Butow RA, Fox TD (1990) Organelle transformation: shoot first, ask questions later. Trends Biochem Sci 15:465–468

    PubMed  Google Scholar 

  • Chrzanowska-Lightowlers ZM, Temperley RJ, Smith PM, Seneca SH, Lightowlers RN (2004) Functional polypeptides can be synthesized from human mitochondrial transcripts lacking termination codons. Biochem J 377:725–731

    PubMed  CAS  Google Scholar 

  • Covello PS, Gray MW (1993) On the evolution of RNA editing. Trends Genet 9:265–268

    PubMed  CAS  Google Scholar 

  • Dellaporta SL et al (2006) Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci U S A 103:8751–8756

    PubMed  CAS  Google Scholar 

  • Edqvist J, Burger G, Gray MW (2000) Expression of mitochondrial protein-coding genes in Tetrahymena pyriformis. J Mol Biol 297:381–393

    PubMed  CAS  Google Scholar 

  • Etheridge RD, Aphasizheva I, Gershon PD, Aphasizhev R (2008) 3′ adenylation determines mRNA abundance and monitors completion of RNA editing in T. brucei mitochondria. EMBO J 27:1596–1608

    PubMed  CAS  Google Scholar 

  • Fan J, Lee RW (2002) Mitochondrial genome of the colorless green alga Polytomella parva: two linear DNA molecules with homologous inverted repeat Termini. Mol Biol Evol 19:999–1007

    Google Scholar 

  • Fauron C, Casper M, Gao Y, Moore B (1995) The maize mitochondrial genome: dynamic, yet functional. Trends Genet 11:228–235

    PubMed  CAS  Google Scholar 

  • Feagin JE (1992) The 6-kb element of Plasmodium falciparum encodes mitochondrial cytochrome genes. Mol Biochem Parasitol 52:145–148

    PubMed  CAS  Google Scholar 

  • Feagin JE, Gardner MJ, Williamson DH, Wilson RJ (1991) The putative mitochondrial genome of Plasmodium falciparum. J Protozool 38:243–245

    PubMed  CAS  Google Scholar 

  • Feagin JE, Mericle BL, Werner E, Morris M (1997) Identification of additional rRNA fragments encoded by the Plasmodium falciparum 6 kb element. Nucleic Acids Res 25:438–446

    PubMed  CAS  Google Scholar 

  • Forget L, Ustinova J, Wang Z, Huss VA, Lang BF (2002) Hyaloraphidium curvatum: a linear mitochondrial genome, tRNA editing, and an evolutionary link to lower fungi. Mol Biol Evol 19:310–319

    PubMed  CAS  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    PubMed  CAS  Google Scholar 

  • Funes S et al (2002a) The typically mitochondrial DNA-encoded ATP6 subunit of the F1F0-ATPase is encoded by a nuclear gene in Chlamydomonas reinhardtii. J Biol Chem 277:6051–6058

    PubMed  CAS  Google Scholar 

  • Funes S et al (2002b) A green algal apicoplast ancestor. Science 298:2155

    PubMed  CAS  Google Scholar 

  • Gagliardi D, Stepien PP, Temperley RJ, Lightowlers RN, Chrzanowska-Lightowlers ZM (2004) Messenger RNA stability in mitochondria: different means to an end. Trends Genet 20:260–267

    PubMed  CAS  Google Scholar 

  • Gawryluk RM, Gray MW (2010) An ancient fission of mitochondrial Cox1. Mol Biol Evol 27:7–10

    PubMed  CAS  Google Scholar 

  • Gillespie DE, Salazar NA, Rehkopf DH, Feagin JE (1999) The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum have short A tails. Nucleic Acids Res 27:2416–2422

    PubMed  CAS  Google Scholar 

  • Glanz S, Kuck U (2009) Trans-splicing of organelle introns–a detour to continuous RNAs. Bioessays 31:921–934

    PubMed  CAS  Google Scholar 

  • Gott JM, Emeson RB (2000) Functions and mechanisms of RNA editing. Annu Rev Genet 34:499–531

    PubMed  CAS  Google Scholar 

  • Gray MW (2003) Diversity and evolution of mitochondrial RNA editing systems. IUBMB Life 55:227–233

    PubMed  CAS  Google Scholar 

  • Gray MW (2009) The path to RNA editing in plant mitochondria: the Halifax chapter. IUBMB Life 61:1114–1117

    PubMed  CAS  Google Scholar 

  • Gray MW, Boer PH (1988) Organization and expression of algal (Chlamydomonas reinhardtii) mitochondrial DNA. Philos Trans R Soc Lond B Biol Sci 319:135–147

    PubMed  CAS  Google Scholar 

  • Gray MW et al (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878

    PubMed  CAS  Google Scholar 

  • Gray MW, Lang BF, Burger G (2004) Mitochondria of protists. Annu Rev Genet 38:477–524

    PubMed  CAS  Google Scholar 

  • Gray MW, Lukes J, Archibald JM, Keeling PJ, Doolittle WF (2010) Cell biology. Irremediable complexity? Science 330:920–921

    PubMed  CAS  Google Scholar 

  • Grewe F, Viehoever P, Weisshaar B, Knoop V (2009) A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucleic Acids Res 37:5093–5104

    PubMed  CAS  Google Scholar 

  • Heinonen TY, Schnare MN, Young PG, Gray MW (1987) Rearranged coding segments, separated by a transfer RNA gene, specify the two parts of a discontinuous large subunit ribosomal RNA in Tetrahymena pyriformis mitochondria. J Biol Chem 262:2879–2887

    PubMed  CAS  Google Scholar 

  • Jackson CJ, Norman JE, Schnare MN, Gray MW, Keeling PJ, Waller RF (2007) Broad genomic and transcriptional analysis reveals a highly derived genome in dinoflagellate mitochondria. BMC Biol 5:41

    PubMed  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    PubMed  CAS  Google Scholar 

  • Jacob Y, Seif E, Paquet PO, Lang BF (2004) Loss of the mRNA-like region in mitochondrial tmRNAs of jakobids. RNA 10:605–614

    PubMed  CAS  Google Scholar 

  • Jostensen J-P, Sperstad S, Johansen S, Landfald B (2002) Molecular-phylogenetic, structural and biochemical features of a cold-adapted, marine ichthyosporean near the animal-fungal divergence, described from in vitro cultures. Eur J Protistol 38:93–104

    Google Scholar 

  • Jukes TH, Osawa S (1990) The genetic code in mitochondria and chloroplasts. Experientia 46:1117–1126

    PubMed  CAS  Google Scholar 

  • Kamikawa R, Inagaki Y, Sako Y (2007) Fragmentation of mitochondrial large subunit rRNA in the dinoflagellate Alexandrium catenella and the evolution of rRNA structure in alveolate mitochondria. Protist 158:239–245

    PubMed  CAS  Google Scholar 

  • Kamikawa R, Nishimura H, Sako Y (2009) Analysis of the mitochondrial genome, transcripts, and electron transport activity in the dinoflagellate Alexandrium catenella (Gonyaulacales, Dinophyceae). Phycol Res 57:1–11

    CAS  Google Scholar 

  • Kannan S, Burger G (2008) Unassigned MURF1 of kinetoplastids codes for NADH dehydrogenase subunit 2. BMC Genomics 9:455

    PubMed  Google Scholar 

  • Kent ML, Elston RA, Nerad TA, Sawer TK (1987) An Isonema-like flagellate (Protozoa: Mastigophora) infection in larval Geoduck clams, Panope abrupta. J Invertebr Pathol 50:221–229

    PubMed  CAS  Google Scholar 

  • Kiethega G, Turcotte M, Burger G (2011) Evolutionary conserved trans-splicing without cis-motifs. Mol Biol Evol. doi:10.1093/molbev/msr075

  • Kornberg A, Baker J (1992) DNA replication, 2nd edn. W.H. Freeman, & Co, New-York

    Google Scholar 

  • Kozak M (1983) Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol Rev 47:1–45

    PubMed  CAS  Google Scholar 

  • Kubo T, Newton KJ (2008) Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14

    PubMed  CAS  Google Scholar 

  • Kuhn J, Tengler U, Binder S (2001) Transcript lifetime is balanced between stabilizing stem-loop structures and degradation-promoting polyadenylation in plant mitochondria. Mol Cell Biol 21:731–742

    PubMed  CAS  Google Scholar 

  • Lang BF, Burger G (2007) Purification of mitochondrial and plastid DNA. Nat Protoc 2:652–660

    PubMed  CAS  Google Scholar 

  • Lang BF et al (1997) An ancestral mitochondrial DNA resembling a eubacterial genome in miniature. Nature 387:493–497

    PubMed  CAS  Google Scholar 

  • Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397

    PubMed  CAS  Google Scholar 

  • Lang BF, O’Kelly C, Nerad T, Gray MW, Burger G (2002) The closest unicellular relatives of animals. Curr Biol 12:1773–1778

    PubMed  CAS  Google Scholar 

  • Lang BF, Laforest MJ, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23:119–125

    PubMed  CAS  Google Scholar 

  • Lekomtsev S, Kolosov P, Bidou L, Frolova L, Rousset JP, Kisselev L (2007) Different modes of stop codon restriction by the Stylonychia and Paramecium eRF1 translation termination factors. Proc Natl Acad Sci U S A 104:10824–10829

    PubMed  CAS  Google Scholar 

  • Lewis SM, Cote AG (2006) Palindromes and genomic stress fractures: bracing and repairing the damage. DNA Repair (Amst) 5:1146–1160

    CAS  Google Scholar 

  • Lichtwardt RW (1973) Trichomycetes. In: Ainsworth GC, Sparrow FK, Sussman AS (eds) The fungi. An advances treatise. Academic press, New York, pp 237–243

    Google Scholar 

  • Lichtwardt RW (1986) The trichomycetes: fungal associates of arthropods. Springer, New York

    Google Scholar 

  • Lin S, Zhang H, Spencer DF, Norman JE, Gray MW (2002) Widespread and extensive editing of mitochondrial mRNAs in dinoflagellates. J Mol Biol 320:727–739

    PubMed  CAS  Google Scholar 

  • Ling F, Shibata T (2004) Mhr1p-dependent concatemeric mitochondrial DNA formation for generating yeast mitochondrial homoplasmic cells. Mol Biol Cell 15:310–322

    PubMed  CAS  Google Scholar 

  • Liu T, Bundschuh R (2005) Model for codon position bias in RNA editing. Phys Rev Lett 95:088101

    PubMed  Google Scholar 

  • Lonergan KM, Gray MW (1996) Expression of a continuous open reading frame encoding subunits 1 and 2 of cytochrome c oxidase in the mitochondrial DNA of Acanthamoeba castellanii. J Mol Biol 257:1019–1030

    PubMed  CAS  Google Scholar 

  • Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    PubMed  CAS  Google Scholar 

  • Lukes J, Jirku M, Avliyakulov N, Benada O (1998) Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis. EMBO J 17:838–846

    CAS  Google Scholar 

  • Lukes J, Hashimi H, Zikova A (2005) Unexplained complexity of the mitochondrial genome and transcriptome in kinetoplastid flagellates. Curr Genet 48:277–299

    PubMed  CAS  Google Scholar 

  • Lukes J, Leander BS, Keeling PJ (2009) Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci U S A 106(Suppl 1):9963–9970

    PubMed  CAS  Google Scholar 

  • Lynch M, Koskella B, Schaack S (2006) Mutation pressure and the evolution of organelle genomic architecture. Science 311:1727–1730

    PubMed  CAS  Google Scholar 

  • Marande W, Burger G (2007) Mitochondrial DNA as a genomic jigsaw puzzle. Science 318:415

    PubMed  CAS  Google Scholar 

  • Marande W, Lukeš J, Burger G (2005) Unique mitochondrial genome structure in diplonemids, the sister group of kinetoplastids. Eukaryot Cell 4:1137–1146

    PubMed  CAS  Google Scholar 

  • Masuda I, Matsuzaki M, Kita K (2010) Extensive frameshift at all AGG and CCC codons in the mitochondrial cytochrome c oxidase subunit 1 gene of Perkinsus marinus (Alveolata; Dinoflagellata). Nucleic Acids Res 38:6186–6194

    PubMed  CAS  Google Scholar 

  • Miyamoto H, Machida RJ, Nishida S (2010) Complete mitochondrial genome sequences of the three pelagic chaetognaths Sagitta nagae, Sagitta decipiens and Sagitta enflata. Comp Biochem Physiol Part D Genomics Proteomics 5:65–72

    PubMed  Google Scholar 

  • Mottagui-Tabar S, Isaksson LA (1998) The influence of the 5′ codon context on translation termination in Bacillus subtilis and Escherichia coli is similar but different from Salmonella typhimurium. Gene 212:189–196

    PubMed  CAS  Google Scholar 

  • Moreira S, Breton S, Burger G (2011) Wiley Interdiscip Rev RNA, in press

    Google Scholar 

  • Nash EA, Barbrook AC, Edwards-Stuart RK, Bernhardt K, Howe CJ, Nisbet RE (2007) Organization of the mitochondrial genome in the dinoflagellate Amphidinium carterae. Mol Biol Evol 24:1528–1536

    PubMed  CAS  Google Scholar 

  • Nash EA, Nisbet RE, Barbrook AC, Howe CJ (2008) Dinoflagellates: a mitochondrial genome all at sea. Trends Genet 24:328–335

    PubMed  CAS  Google Scholar 

  • Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G (2000) The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10:819–831

    PubMed  CAS  Google Scholar 

  • Norman JE, Gray MW (1997) The cytochrome oxidase subunit 1 gene (cox1) from the dinoflagellate, Crypthecodinium cohnii. FEBS Lett 413:333–338

    PubMed  CAS  Google Scholar 

  • Norman JE, Gray MW (2001) A complex organization of the gene encoding cytochrome oxidase subunit 1 in the mitochondrial genome of the dinoflagellate, Crypthecodinium cohnii: homologous recombination generates two different cox1 open reading frames. J Mol Evol 53:351–363

    PubMed  CAS  Google Scholar 

  • Ogawa S et al (2000) The mitochondrial DNA of Dictyostelium discoideum: complete sequence, gene content and genome organization. Mol Gen Genet 263:514–519

    PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562

    PubMed  CAS  Google Scholar 

  • Paquin B, Laforest MJ, Lang BF (2000) Double-hairpin elements in the mitochondrial DNA of allomyces: evidence for mobility. Mol Biol Evol 17:1760–1768

    PubMed  CAS  Google Scholar 

  • Pombert JF, Keeling PJ (2010) The mitochondrial genome of the entomoparasitic green alga Helicosporidium. PLoS One 5:e8954

    PubMed  Google Scholar 

  • Pritchard AE, Cummings DJ (1981) Replication of linear mitochondrial DNA from Paramecium: sequence and structure of the initiation-end crosslink. Proc Natl Acad Sci U S A 78:7341–7345

    PubMed  CAS  Google Scholar 

  • Raczynska KD, Le Ret M, Rurek M, Bonnard G, Augustyniak H, Gualberto JM (2006) Plant mitochondrial genes can be expressed from mRNAs lacking stop codons. FEBS Lett 580:5641–5646

    Google Scholar 

  • Rehkopf DH, Gillespie DE, Harrell MI, Feagin JE (2000) Transcriptional mapping and RNA processing of the Plasmodium falciparum mitochondrial mRNAs. Mol Biochem Parasitol 105:91–103

    PubMed  CAS  Google Scholar 

  • Richard O, Bonnard G, Grienenberger JM, Kloareg B, Boyen C (1998) Transcription initiation and RNA processing in the mitochondria of the red alga Chondrus crispus: convergence in the evolution of transcription mechanisms in mitochondria. J Mol Biol 283:549–557

    PubMed  CAS  Google Scholar 

  • Richly E, Leister D (2004) NUMTs in sequenced eukaryotic genomes. Mol Biol Evol 21:1081–1084

    PubMed  CAS  Google Scholar 

  • Rodriguez-Ezpeleta N, Teijeiro S, Forget L, Burger G, Lang BF (2009) 3. Generation of cDNA libraries: Protists and Fungi. In: Parkinson J (ed) Methods in Molecular Biology: Expressed Sequence Tags (ESTs). Humana Press, Totowa, NJ

    Google Scholar 

  • Roy J, Faktorova D, Benada O, Lukes J, Burger G (2007a) Description of Rhynchopus euleeides n. sp. (Diplonemea), a free-living marine euglenozoan. J Eukaryot Microbiol 54:137–145

    PubMed  Google Scholar 

  • Roy J, Faktorova D, Lukes J, Burger G (2007b) Unusual mitochondrial genome structures throughout the Euglenozoa. Protist 158:385–396

    PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I et al (2007) The origins of multicellularity: a multi-taxon genome initiative. Trends Genet 23:113–118

    PubMed  CAS  Google Scholar 

  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF (2008) A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 25:664–672

    PubMed  CAS  Google Scholar 

  • Rycovska A, Valach M, Tomaska L, Bolotin-Fukuhara M, Nosek J (2004) Linear versus circular mitochondrial genomes: intraspecies variability of mitochondrial genome architecture in Candida parapsilosis. Microbiology 150:1571–1580

    PubMed  CAS  Google Scholar 

  • Shao R, Kirkness EF, Barker SC (2009) The single mitochondrial chromosome typical of animals has evolved into 18 minichromosomes in the human body louse, Pediculus humanus. Genome Res 19:904–912

    PubMed  CAS  Google Scholar 

  • Shapiro TA, Englund PT (1995) The structure and replication of kinetoplast DNA. Annu Rev Microbiol 49:117–143

    PubMed  CAS  Google Scholar 

  • Shutt TE, Gray MW (2006) Homologs of mitochondrial transcription factor B, sparsely distributed within the eukaryotic radiation, are likely derived from the dimethyladenosine methyltransferase of the mitochondrial endosymbiont. Mol Biol Evol 23:1169–1179

    PubMed  CAS  Google Scholar 

  • Simpson L (1997) The genomic organization of guide RNA genes in kinetoplastid protozoa: several conundrums and their solutions. Mol Biochem Parasitol 86:133–141

    PubMed  CAS  Google Scholar 

  • Simpson AM, Suyama Y, Dewes H, Campbell DA, Simpson L (1989) Kinetoplastid mitochondria contain functional tRNAs which are encoded in nuclear DNA and also contain small minicircle and maxicircle transcripts of unknown function. Nucleic Acids Res 17:5427–5445

    PubMed  CAS  Google Scholar 

  • Slamovits CH, Saldarriaga JF, Larocque A, Keeling PJ (2007) The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J Mol Biol 372:356–368

    PubMed  CAS  Google Scholar 

  • Smith DR, Hua J, Lee RW (2010) Evolution of linear mitochondrial DNA in three known lineages of Polytomella. Curr Genet 56:427–438

    Google Scholar 

  • Stuart KD, Schnaufer A, Ernst NL, Panigrahi AK (2005) Complex management: RNA editing in trypanosomes. Trends Biochem Sci 30:97–105

    PubMed  CAS  Google Scholar 

  • Su D, Lieberman A, Lang BF, Simonovic M, Soll D, Ling J (2011) An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine. Nucleic Acids Res 39(11):4866–4874

    PubMed  CAS  Google Scholar 

  • Suga K, Mark Welch DB, Tanaka Y, Sakakura Y, Hagiwara A (2008) Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis. Mol Biol Evol 25:1129–1137

    PubMed  CAS  Google Scholar 

  • Sugiyama Y et al (2005) The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol Genet Genomics 272:603–615

    PubMed  CAS  Google Scholar 

  • Takenaka M, Verbitskiy D, van der Merwe JA, Zehrmann A, Brennicke A (2008) The process of RNA editing in plant mitochondria. Mitochondrion 8:35–46

    PubMed  CAS  Google Scholar 

  • Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Hungry codons promote frameshifting in human mitochondrial ribosomes. Science 327:301

    PubMed  CAS  Google Scholar 

  • Valach M et al (2011) Evolution of linear chromosomes and multipartite genomes in yeast mitochondria. Nucleic Acids Res 39(10):4202–4219

    PubMed  CAS  Google Scholar 

  • van Dooren GG, Stimmler LM, McFadden GI (2006) Metabolic maps and functions of the Plasmodium mitochondrion. FEMS Microbiol Rev 30:596–630

    PubMed  Google Scholar 

  • Vickerman K (2000) Diplonemids. In: Lee JJ, Leedale GF, Bradbury P (eds) An illustrated guide to the protozoa. Allen Press, Lawrence, Kansas, pp 1157–1159

    Google Scholar 

  • Vlcek C, Marande W, Teijeiro S, Lukes J, Burger G (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 39(3):979–988

    PubMed  CAS  Google Scholar 

  • Voigt O, Erpenbeck D, Worheide G (2008) A fragmented metazoan organellar genome: the two mitochondrial chromosomes of Hydra magnipapillata. BMC Genomics 9:350

    PubMed  Google Scholar 

  • Waller RF, Jackson CJ (2009) Dinoflagellate mitochondrial genomes: stretching the rules of molecular biology. Bioessays 31:237–245

    PubMed  CAS  Google Scholar 

  • Waller RF, Keeling PJ (2006) Alveolate and chlorophycean mitochondrial cox2 genes split twice independently. Gene 383:33–37

    PubMed  CAS  Google Scholar 

  • Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803

    PubMed  CAS  Google Scholar 

  • Warrior R, Gall J (1985) The mitochondrial DNA of Hydra attenuata and Hydra littoralis consists of two linear molecules. Arch Sci Geneva 38:439–445

    Google Scholar 

  • Watanabe KI, Bessho Y, Kawasaki M, Hori H (1999) Mitochondrial genes are found on minicircle DNA molecules in the mesozoan animal Dicyema. J Mol Biol 286:645–650

    PubMed  CAS  Google Scholar 

  • Wolff G, Kuck U (1996) Transcript mapping and processing of mitochondrial RNA in the chlorophyte alga Prototheca wickerhamii. Plant Mol Biol 30:577–595

    PubMed  CAS  Google Scholar 

  • Zhang H, Bhattacharya D, Maranda L, Lin S (2008) Mitochondrial cob and cox1 genes and editing of the corresponding mRNAs in Dinophysis acuminata from Narragansett Bay, with special reference to the phylogenetic position of the genus Dinophysis. Appl Environ Microbiol 74:1546–1554

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gertraud Burger .

Editor information

Editors and Affiliations

Appendix

Appendix

Public, Internet-accessible data sources on mitochondrial genomes of all eukaryotes:

  1. 1.

    NCBI’s complete organelle genome section. (http://www.ncbi.nlm.nih.gov/genomes/genlist.cgi?taxid=2759&type=4&name=Eukaryotae Organelles)

  2. 2.

    GOBASE is a taxonomically broad database on genomes from mitochondria and chloroplasts as well as selected bacteria belonging to groups from which these organelles originated. GOBASE integrates DNA and protein sequences, RNA secondary structures, and information on RNA editing, taxonomy and human mitochondrial DNA mutations and associated diseases. Data are drawn from various sources including NCBI’s GenBank, and curated diligently. The last update is from June 2010. The database is being maintained, but further updates are not anticipated due to termination of funding.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burger, G., Jackson, C.J., Waller, R.F. (2012). Unusual Mitochondrial Genomes and Genes. In: Bullerwell, C. (eds) Organelle Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22380-8_3

Download citation

Publish with us

Policies and ethics