Skip to main content

Numerical Study of Blood Flow Pressure Drop in Aorta Coronary Sinus Conduit

  • Chapter
  • First Online:
  • 1185 Accesses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 14))

Abstract

Numerical studies of the blood flow system of aorta coronary sinus conduit were carried out using ANSYS™ CFD simulation. The pressure inside the conduit was investigated to ensure a pressure drop from 80 to 15 mmHg. It was aimed to model a coronary sinus conduit in three-dimension using ANSYS™ CFD. The simulation involved pre-modeling, modeling and simulation stages where the model will undergo each section of program in ANSYS™ CFD such as design modeler, meshing, pre-processing, solver and post-processing. From the analysis of coronary sinus conduit, it is found that a narrow tube needs to be incorporated into the conduit produce. This is to induce a venturi effect to reduce the pressure of blood from 80 to 15 mmHg within a specific throat length. A model of 3 mm inlet and throat diameter of 1.13 mm throat diameter show the best result for pressure reduction from 80 to 15 mmHg. The model gives a uniform pressure drop along the throat section of the conduit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Symbol:

Definition (unit)

\( \dot{\gamma } \) :

Strain rate (s−1)

\( \ell \) :

Length of tube (m)

D:

Diameter (m)

Dm :

Major diameter (m)

Dn :

Minor diameter (m)

K:

Consistency index (Dimensionless)

L:

Length (m)

m:

Plane number (Dimensionless)

n:

Power law index (Dimensionless)

N:

Number of part of the tube (Dimensionless)

P1 :

Pressure at point 1 (Pa)

P2 :

Pressure at point 2 (Pa)

Q:

Volumetric flow rate (m3/s)

Re:

Reynolds Number (Dimensionless)

T:

Temperature (K)

To :

Reference temperature (K)

V:

Velocity (m/s)

α:

Angle of bending in radian (rad)

λ:

Friction coefficient (Dimensionless)

μ:

Viscosity (Pa s)

ρ:

Density (kg/m3)

References

  1. Grondin, C.M., Campeau, L., Lesperance, J., Solymoss, B.C., Vouhe, P., Castonguay, Y.R., Meere, C., Bourassa, M.G.: Atherosclerotic changes in coronary vein grafts six years after operation. Angiographic aspects in 110 patients. J. Thorac. Cardiovasc. Surg. 77, 24 (1979)

    CAS  Google Scholar 

  2. Hamby, R.I., Aintablian, A., Handler, M., Voleti, C., Weisz, D., Garvey, J.W., Wisoff, G.: Aortocoronary saphenous vein bypass grafts. Long term patency, morphology and blood flow in patients with patent grafts early after surgery. Circulation 60, 901 (1979)

    CAS  Google Scholar 

  3. Grondin, C.M.: Results of invasive studies to assess the first decade of coronary artery bypass operations. Presented at the American College of Surgeons, San Francisco (1981)

    Google Scholar 

  4. Pigott, J.D., Kouchoukos, N.T., Oberman, A., Cutler, G.R.: Late results of surgical and medical therapy for patients with coronary artery disease and depressed left ventricular function. J. Am. Coll. Cardiol. 5, 1036 (1985)

    Article  CAS  Google Scholar 

  5. Ratajczyk-Pakalska, E.: Thebesian veins in the human heart with atherosclerotic lesions in the coronary arteries. In: Mohl, W., et al. (eds.) The Coronary Sinus, pp. 141–145. Steinkopff Verlag, Darmstadt (1984)

    Google Scholar 

  6. Baroldi, G., Scomazzoni, G.: Coronary Circulation in the Normal and the Pathologic Heart. Office of the Surgeon General, Washington (1967)

    Google Scholar 

  7. Pratt, F.H.: The nutrition of the heart through the vessels of Thebesius and the coronary veins. Am. J. Physio. 1, 86 (1898)

    Google Scholar 

  8. Beck, C.S.: Revascularization of the heart. Ann. Surg. 128, 854 (1948)

    Article  Google Scholar 

  9. Beck, C.S., Stanton, E., Batiuchok, W., Letter, E.: Revascularization of the heart by a graft of systemic artery into coronary sinus. JAMA 137, 436 (1948)

    Article  CAS  Google Scholar 

  10. Mohl, W.: The development and rationale of pressure-controlled intermittent coronary sinus occlusion: A new approach to protect is chemic myocardium. Wien. Klin. Wochenschr. 96, 20–25 (1984)

    CAS  Google Scholar 

  11. Mohl, W., Glogar, D., Mayr, H., et al.: Reduction of infarct size by pressure controlled intermitted coronary sinus occlusion. Am. J. Cardiol. 53, 923–928 (1984)

    Article  CAS  Google Scholar 

  12. Papp, L., Kekesi, V., Osvath, B.: The effect of pressure controlled intermitted coronary sinus occlusion during reperfusion. In: Mohl, W., et al. (eds.) Clinics of CSI, pp. 339–344. Steinkopff Verlag, Darmstadt (1984)

    Google Scholar 

  13. Gundry, S.R., Kirsh, M.M.: A comparison of retrograde cardioplegia versus antegrade cardioplegia in the presence of coronary artery obstruction. Ann. Thorac. Surg. 38, 124–127 (1984)

    Article  CAS  Google Scholar 

  14. Solorzano, J., Taitelbaum, G., Chiu, R.C.J.: Retrograde coronary sinus perfusion for myocardial protection during cardiopulmonary bypass. Ann. Thorac. Surg. 25, 201–211 (1978)

    Article  CAS  Google Scholar 

  15. Giancoli, D.C.: Physics. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  16. Cengel, Y.A., Cimbala, J.M.: Fluid Mechanics: Fundamentals and Applications. McGraw-Hill Companies Inc., New York (2007)

    Google Scholar 

  17. Petkova, S., Hossain, A., Naser, J., Palombo, E.: CFD modeling of blood in portal vein hypertension with and without thrombosis. 3rd International Conference on CFD in the Minerals and Process Industries. Australia (2003)

    Google Scholar 

  18. Aviado, D.M.: The Bezold-Jarisch reflex: A historical perspective of cardiopulmonary reflexes. Ann New York Acad Sci 2006 940, 48–58(1953)

    Google Scholar 

  19. Eckstein, R.W., Hornberger, J.C., Sano, T.: Acute effects of elevation of coronary sinus pressure. Circulation 7(3):422–436

    Google Scholar 

  20. Gott, V.L., Gonzalez, J.L., Zuhdi, M., et al.: Retrograde per-fusion of coronary sinus for direct vision aortic surgery. Surg. Gynecol. Obstet. 104, 319–328 (1957)

    CAS  Google Scholar 

  21. Lolley, D.M., Hewitt, R.L.: Myocardial distribution of asanguineous solutions retroperfused under low pressure through the coronary sinus. J. Cardiovasc. Surg. 1980(21), 287–294 (1980)

    Google Scholar 

  22. Noel de Nevers.: Fluid Mechanics for Chemical Engineers. McGraw-Hill, Singapore (2005)

    Google Scholar 

Download references

Acknowledgments

First and foremost, I would like to express my deepest gratitude, appreciation and support to all the research team members. This research has been filed for patent by Innovation & Commercialisation Center of Universiti Putra Malaysia on 16 November 2009. The application number is PI20097028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aslina Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hussain, S.A., Tat, T.H., Hamid, M.I.A., Abdullah, N., Idris, A. (2012). Numerical Study of Blood Flow Pressure Drop in Aorta Coronary Sinus Conduit. In: Öchsner, A., da Silva, L., Altenbach, H. (eds) Analysis and Design of Biological Materials and Structures. Advanced Structured Materials, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22131-6_11

Download citation

Publish with us

Policies and ethics