Skip to main content

Ageing of the Retina and Retinal Pigment Epithelium

  • Chapter
  • First Online:
Book cover Age-related Macular Degeneration

Abstract

Ageing has been de fi ned as “the progressive accumulation of changes with time that are associated with, or responsible for, the ever-increasing susceptibility to disease and death which accompanies advancing age”[1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harman D (1981) The ageing process. Proc Natl Acad Sci USA 78(11):7124–7128

    Article  PubMed  CAS  Google Scholar 

  2. Margrain TH, Boulton ME (2005) Sensory impairment. In: Johnson M (ed) The Cambridge handbook of age and ageing. University Press, Cambridge, pp 121–130

    Google Scholar 

  3. Boulton M (1991) Ageing of the retinal pigment epithelium. In: Osborne N, Chader G (eds) Progress in retinal research. Pergamon Press, Oxford, pp 125–151

    Google Scholar 

  4. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614

    Article  PubMed  Google Scholar 

  5. de Jong PT (2006) Age-related macular degeneration. N Engl J Med 355(14):1474–1485

    Article  PubMed  Google Scholar 

  6. Bengtson VL, Putney NM, Johnson ML (2005) The problem of theory in gerontology today. In: Johnson ML (ed) The Cambridge handbook of age and ageing. Cambridge University Press, Cambridge, pp 3–20

    Google Scholar 

  7. Carnes BA, Staats DO, Sonntag WE (2008) Does senescence give rise to disease? Mech Ageing Dev 129(12):693–699

    Article  PubMed  Google Scholar 

  8. Harman D (1956) Ageing: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  PubMed  CAS  Google Scholar 

  9. Boulton ME (2008) Ageing of the retinal pigment epithelium. In: Tombran-Tink J, Barnstable CJ (eds) Visual transduction and non-visual light perception. Humana Press, Totowa, pp 403–420

    Chapter  Google Scholar 

  10. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145–147

    PubMed  CAS  Google Scholar 

  11. Miquel J et al (1980) Mitochondrial role in cell ageing. Exp Gerontol 15(6):575–591

    Article  PubMed  CAS  Google Scholar 

  12. Jarrett SG et al (2008) Mitochondrial DNA damage and its potential role in retinal degeneration. Prog Retin Eye Res 27(6):596–607

    Article  PubMed  CAS  Google Scholar 

  13. Wang AL et al (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651

    PubMed  Google Scholar 

  14. Nordgaard CL et al (2008) Mitochondrial proteomics of the retinal pigment epithelium at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 49(7):2848–2855

    Article  PubMed  Google Scholar 

  15. Kenney MC et al (2010) Characterization of retinal and blood mitochondrial DNA from age-related macular degeneration patients. Invest Ophthalmol Vis Sci 51(8):4289–4297

    Article  PubMed  Google Scholar 

  16. Kanski J (2003) Clinical ophthalmology: a systematic approach. Butterworth-Heinemann, London

    Google Scholar 

  17. Salvi SM, Akhtar S, Currie Z (2006) Ageing changes in the eye. Postgrad Med J 82(971):581–587

    Article  PubMed  CAS  Google Scholar 

  18. Guirao A et al (1999) Average optical performance of the human eye as a function of age in a normal population. Invest Ophthalmol Vis Sci 40(1):203–213

    PubMed  CAS  Google Scholar 

  19. Langrova H et al (2008) Age-related changes in retinal functional topography. Invest Ophthalmol Vis Sci 49(11):5024–5032

    Article  PubMed  Google Scholar 

  20. Mohidin N, Yap MK, Jacobs RJ (1999) Influence of age on the multifocal electroretinography. Ophthalmic Physiol Opt 19(6):481–488

    Article  PubMed  CAS  Google Scholar 

  21. Tzekov RT, Gerth C, Werner JS (2004) Senescence of human multifocal electroretinogram components: a localized approach. Graefes Arch Clin Exp Ophthalmol 242(7):549–560

    Article  PubMed  Google Scholar 

  22. Bonnel S, Mohand-Said S, Sahel JA (2003) The ageing of the retina. Exp Gerontol 38(8):825–831

    Article  PubMed  Google Scholar 

  23. Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576

    Article  PubMed  CAS  Google Scholar 

  24. Jackson GR, Owsley C (2000) Scotopic sensitivity during adulthood. Vision Res 40(18):2467–2473

    Article  PubMed  CAS  Google Scholar 

  25. Owsley C et al (2000) Psychophysical evidence for rod vulnerability in age-related macular degeneration. Invest Ophthalmol Vis Sci 41(1):267–273

    PubMed  CAS  Google Scholar 

  26. Danias J et al (2003) Quantitative analysis of retinal ganglion cell (RGC) loss in ageing DBA/2NNia glaucomatous mice: comparison with RGC loss in ageing C57/BL6 mice. Invest Ophthalmol Vis Sci 44(12):5151–5162

    Article  PubMed  Google Scholar 

  27. Neufeld AH et al (2002) Loss of retinal ganglion cells following retinal ischemia: the role of inducible nitric oxide synthase. Exp Eye Res 75(5):521–528

    Article  PubMed  CAS  Google Scholar 

  28. Eliasieh K, Liets LC, Chalupa LM (2007) Cellular reorganization in the human retina during normal ageing. Invest Ophthalmol Vis Sci 48(6):2824–2830

    Article  PubMed  Google Scholar 

  29. Alamouti B, Funk J (2003) Retinal thickness decreases with age: an OCT study. Br J Ophthalmol 87(7):899–901

    Article  PubMed  CAS  Google Scholar 

  30. Eriksson U, Alm A (2009) Macular thickness decreases with age in normal eyes: a study on the macular thickness map protocol in the Stratus OCT. Br J Ophthalmol 93(11):1448–1452

    Article  PubMed  CAS  Google Scholar 

  31. Cavallotti C et al (2004) Age-related changes in the human retina. Can J Ophthalmol 39(1):61–68

    PubMed  Google Scholar 

  32. Boulton ME (2009) Lipofuscin of the retinal pigment epithelium. In: Lois N, Forrester JV (eds) Fundus autofluorescence. Wolters Kluwer/Lipincott Williams & Wilkins, Philadelphia, pp 14–26

    Google Scholar 

  33. Davies S et al (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 31(2):256–265

    Article  PubMed  CAS  Google Scholar 

  34. Feuer WJ et al (2010) Topographic differences in the age-related changes in the retinal nerve fiber layer of normal eyes measured by Stratus optical coherence tomography. J Glaucoma 20(3):133–138

    Article  Google Scholar 

  35. Gao H, Hollyfield JG (1992) Ageing of the human retina. Differential loss of neurons and retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 33(1):1–17

    PubMed  CAS  Google Scholar 

  36. Curcio CA et al (1993) Ageing of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. Invest Ophthalmol Vis Sci 34(12):3278–3296

    PubMed  CAS  Google Scholar 

  37. Leveillard T et al (2004) Identification and characterization of rod-derived cone viability factor. Nat Genet 36(7):755–759

    Article  PubMed  CAS  Google Scholar 

  38. Chalmel F et al (2007) Rod-derived Cone Viability Factor-2 is a novel bifunctional-thioredoxin-like protein with therapeutic potential. BMC Mol Biol 8:74

    Article  PubMed  CAS  Google Scholar 

  39. Fridlich R et al (2009) The thioredoxin-like protein rod-derived cone viability factor (RdCVFL) interacts with TAU and inhibits its phosphorylation in the retina. Mol Cell Proteomics 8(6):1206–1218

    Article  PubMed  CAS  Google Scholar 

  40. Aggarwal P, Nag TC, Wadhwa S (2007) Age-related decrease in rod bipolar cell density of the human retina: an immunohistochemical study. J Biosci 32(2):293–298

    Article  PubMed  CAS  Google Scholar 

  41. Liets LC et al (2006) Dendrites of rod bipolar cells sprout in normal ageing retina. Proc Natl Acad Sci USA 103(32):12156–12160

    Article  PubMed  CAS  Google Scholar 

  42. Terzibasi E et al (2009) Age-dependent remodelling of retinal circuitry. Neurobiol Ageing 30(5):819–828

    Article  PubMed  CAS  Google Scholar 

  43. Chen M et al (2010) Immune activation in retinal ageing: a gene expression study. Invest Ophthalmol Vis Sci 51(11):5888–5896

    Article  PubMed  Google Scholar 

  44. Chan-Ling T et al (2007) Inflammation and breakdown of the blood-retinal barrier during “physiological ageing” in the rat retina: a model for CNS ageing. Microcirculation 14(1):63–76

    Article  PubMed  Google Scholar 

  45. Xu H, Chen M, Forrester JV (2009) Para-inflammation in the ageing retina. Prog Retin Eye Res 28(5):348–368

    Article  PubMed  CAS  Google Scholar 

  46. Marmor F, Wolfensberger TJ (1998) The retinal pigment epithelium. Oxford University Press, New York/Oxford

    Google Scholar 

  47. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye. Saunders, Philadelphia

    Google Scholar 

  48. Boulton M, Dayhaw-Barker P (2001) The role of the retinal pigment epithelium: topographical variation and ageing changes. Eye (Lond) 15(Pt 3):384–389

    Article  CAS  Google Scholar 

  49. Gouras P et al (2010) Topographic and age-related changes of the retinal epithelium and Bruch’s membrane of rhesus monkeys. Graefes Arch Clin Exp Ophthalmol 248(7):973–984

    Article  PubMed  Google Scholar 

  50. Streeten BW (1969) Development of the human retinal pigment epithelium and the posterior segment. Arch Ophthalmol 81(3):383–394

    Article  PubMed  CAS  Google Scholar 

  51. Marshall J (1987) The ageing retina: physiology or pathology? Eye (Lond) 1:282–295

    Article  Google Scholar 

  52. Burke JM, McKay BS, Jaffe GJ (1991) Retinal pigment epithelial cells of the posterior pole have fewer Na/K adenosine triphosphatase pumps than peripheral cells. Invest Ophth­almol Vis Sci 32(7):2042–2046

    PubMed  CAS  Google Scholar 

  53. Burke JM, Twining SS (1988) Regional comparisons of cathepsin D activity in bovine retinal pigment epithelium. Invest Ophthalmol Vis Sci 29(12):1789–1793

    PubMed  CAS  Google Scholar 

  54. Cabral L et al (1990) Regional distribution of lysosomal enzymes in the canine retinal pigment epithelium. Invest Ophthalmol Vis Sci 31(4):670–676

    PubMed  CAS  Google Scholar 

  55. Panda-Jonas S, Jonas JB, Jakobczyk-Zmija M (1996) Retinal pigment epithelial cell count, distribution, and correlations in normal human eyes. Am J Ophthalmol 121(2):181–189

    PubMed  CAS  Google Scholar 

  56. Del Priore LV, Kuo YH, Tezel TH (2002) Age-related changes in human RPE cell density and apoptosis proportion in situ. Invest Ophthalmol Vis Sci 43(10):3312–3318

    PubMed  Google Scholar 

  57. Dorey CK et al (1989) Cell loss in the ageing retina. Relationship to lipofuscin accumulation and macular degeneration. Invest Ophthalmol Vis Sci 30(8):1691–1699

    PubMed  CAS  Google Scholar 

  58. Feeney-Burns L, Hilderbrand ES, Eldridge S (1984) Ageing human RPE: morphometric analysis of macular, equatorial, and peripheral cells. Invest Ophthalmol Vis Sci 25(2):195–200

    PubMed  CAS  Google Scholar 

  59. Burke JM, Hjelmeland LM (2005) Mosaicism of the retinal pigment epithelium: seeing the small picture. Mol Interv 5(4):241–249

    Article  PubMed  Google Scholar 

  60. Boulton M et al (2004) The photoreactivity of ocular lipofuscin. Photochem Photobiol Sci 3(8):759–764

    Article  PubMed  CAS  Google Scholar 

  61. Rozanowska M, Rozanowski B (2008) Visual transduction and age-related changes in lipofuscin. In: Tombran-Tink J, Barnstable CJ (eds) Visual transduction and non-visual light perception. Humana Press, Totowa, pp 421–462

    Chapter  Google Scholar 

  62. Ng KP et al (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7(7):1397–1405

    Article  PubMed  CAS  Google Scholar 

  63. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5):595–606

    Article  PubMed  CAS  Google Scholar 

  64. Crouch RK et al. (2010) Human A2E levels are higher in the peripheral (extramacular) RPE than in the macular region of the RPE IOVS. ARVO-E abstract 1300

    Google Scholar 

  65. Boulton M et al (1990) Age-related changes in the morphology, absorption and fluorescence of melanosomes and lipofuscin granules of the retinal pigment epithelium. Vision Res 30(9):1291–1303

    Article  PubMed  CAS  Google Scholar 

  66. Clancy KMR et al (2000) Atomic force microscopy and near-field scanning optical microscopy measurements of single human retinal lipofuscin granules. J Phys Chem B 104:12098–12101

    Article  CAS  Google Scholar 

  67. Haralampus-Grynaviski NM et al (2001) Probing the spatial dependence of the emission spectrum of single human retinal lipofuscin granules using near-field scanning optical microscopy. Photochem Photobiol 74(2):364–368

    Article  PubMed  CAS  Google Scholar 

  68. Rozanowska M et al (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270(32):18825–18830

    Article  PubMed  CAS  Google Scholar 

  69. Rozanowska M et al (1998) Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media. Free Radic Biol Med 24(7–8):1107–1112

    Article  PubMed  CAS  Google Scholar 

  70. Gaillard ER et al (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61(5):448–453

    Article  PubMed  CAS  Google Scholar 

  71. Rozanowska M et al (2004) Age-related changes in the photoreactivity of retinal lipofuscin granules: role of chloroform-insoluble components. Invest Ophthalmol Vis Sci 45(4):1052–1060

    Article  PubMed  Google Scholar 

  72. Shamsi FA, Boulton M (2001) Inhibition of RPE lysosomal and antioxidant activity by the age pigment lipofuscin. Invest Ophthalmol Vis Sci 42(12):3041–3046

    PubMed  CAS  Google Scholar 

  73. Godley BF et al (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280(22):21061–21066

    Article  PubMed  CAS  Google Scholar 

  74. Schutt F et al (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41(8):2303–2308

    PubMed  CAS  Google Scholar 

  75. Sparrow JR, Cai B (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42(6):1356–1362

    PubMed  CAS  Google Scholar 

  76. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41(7):1981–1989

    PubMed  CAS  Google Scholar 

  77. Pawlak A et al (2003) Comparison of the aerobic photoreactivity of A2E with its precursor retinal. Photochem Photobiol 77(3):253–258

    Article  PubMed  CAS  Google Scholar 

  78. Rozanowska M, Sarna T (2005) Light-induced damage to the retina: role of rhodopsin chromophore revisited. Photochem Photobiol 81(6):1305–1330

    Article  PubMed  CAS  Google Scholar 

  79. Ben-Shabat S et al (2002) Formation of a nonaoxirane from A2E, a lipofuscin fluorophore related to macular degeneration, and evidence of singlet oxygen involvement. Angew Chem Int Ed Engl 41(5):814–817

    Article  PubMed  CAS  Google Scholar 

  80. Zhou J et al (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci USA 103(44):16182–16187

    Article  PubMed  CAS  Google Scholar 

  81. Bergmann M et al (2004) Inhibition of the ATP-driven proton pump in RPE lysosomes by the major lipofuscin fluorophore A2-E may contribute to the pathogenesis of age-related macular degeneration. FASEB J 18(3):562–564

    PubMed  CAS  Google Scholar 

  82. Holz FG et al (1999) Inhibition of lysosomal degradative functions in RPE cells by a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 40(3):737–743

    PubMed  CAS  Google Scholar 

  83. Liu J et al (2008) Restoration of lysosomal pH in RPE cells from cultured human and ABCA4(−/−) mice: pharmacologic approaches and functional recovery. Invest Ophth­almol Vis Sci 49(2):772–780

    Article  PubMed  Google Scholar 

  84. Vives-Bauza C et al (2008) The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells. J Biol Chem 283(36):24770–24780

    Article  PubMed  CAS  Google Scholar 

  85. Finnemann SC, Leung LW, Rodriguez-Boulan E (2002) The lipofuscin component A2E selectively inhibits phagolysosomal degradation of photoreceptor phospholipid by the retinal pigment epithelium. Proc Natl Acad Sci USA 99(6):3842–3847

    Article  PubMed  CAS  Google Scholar 

  86. Drenos F, Kirkwood TB (2005) Modelling the disposable soma theory of ageing. Mech Ageing Dev 126(1):99–103

    Article  PubMed  Google Scholar 

  87. Boulton ME (1998) The role of melanin in the RPE. In: Marmor M, Wolfensberger T (eds) The retinal pigment epithelium. Oxford University Press, Oxford, pp 68–85

    Google Scholar 

  88. Weiter JJ et al (1986) Retinal pigment epithelial lipofuscin and melanin and choroidal melanin in human eyes. Invest Ophthalmol Vis Sci 27(2):145–152

    PubMed  CAS  Google Scholar 

  89. Kayatz P et al (2001) Oxidation causes melanin fluorescence. Invest Ophthalmol Vis Sci 42(1):241–246

    PubMed  CAS  Google Scholar 

  90. Sarna T et al (2003) Loss of melanin from human RPE with ageing: possible role of melanin photooxidation. Exp Eye Res 76(1):89–98

    Article  PubMed  CAS  Google Scholar 

  91. Sarna T (1992) Properties and function of the ocular melanin – a photophysical view. J Photochem Photobiol B Biol 12:215–258

    Article  CAS  Google Scholar 

  92. Zareba M et al (2006) Oxidative stress in ARPE-19 cultures: do melanosomes confer cytoprotection? Free Radic Biol Med 40(1):87–100

    Article  PubMed  CAS  Google Scholar 

  93. Rozanowski B et al (2008) The phototoxicity of aged human retinal melanosomes. Photochem Photobiol 84(3):650–657

    Article  PubMed  CAS  Google Scholar 

  94. Feeney L (1978) Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies. Invest Ophthalmol Vis Sci 17(7):583–600

    PubMed  CAS  Google Scholar 

  95. Feher J et al (2006) Mitochondrial alterations of retinal pigment epithelium in age-related macular degeneration. Neurobiol Ageing 27(7):983–993

    Article  PubMed  CAS  Google Scholar 

  96. Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, ageing, and neurodegeneration. Ann N Y Acad Sci 1147:21–29

    Article  PubMed  CAS  Google Scholar 

  97. Jarrett SG, Boulton ME (2005) Antioxidant up-regulation and increased nuclear DNA protection play key roles in adaptation to oxidative stress in epithelial cells. Free Radic Biol Med 38(10):1382–1391

    Article  PubMed  CAS  Google Scholar 

  98. Jarrett S, Lewin AS, Boulton ME (2010) The importance of mitochondria in age-related and inherited eye disorders. Ophthalmic Res 44:179–190

    Article  PubMed  CAS  Google Scholar 

  99. Karunadharma PP et al (2010) Mitochondrial DNA damage as a potential mechanism for age-related macular degeneration. Invest Ophthalmol Vis Sci 51(11):5470–5479

    Article  PubMed  Google Scholar 

  100. Udar N et al (2009) Mitochondrial DNA haplogroups associated with age-related macular degeneration. Invest Ophthalmol Vis Sci 50(6):2966–2974

    Article  PubMed  Google Scholar 

  101. Barreau E et al (1996) Accumulation of mitochondrial DNA deletions in human retina during ageing. Invest Ophthalmol Vis Sci 37(2):384–391

    PubMed  CAS  Google Scholar 

  102. Nordgaard CL et al (2006) Proteomics of the retinal pigment epithelium reveals altered protein expression at progressive stages of age-related macular degeneration. Invest Ophthalmol Vis Sci 47(3):815–822

    Article  PubMed  Google Scholar 

  103. Decanini A et al (2007) Changes in select redox proteins of the retinal pigment epithelium in age-related macular degeneration. Am J Ophthalmol 143(4):607–615

    Article  PubMed  CAS  Google Scholar 

  104. Godley BF et al. (2008) Mitochondrial DNA repair capacity decreases with progression of age-related macular degeneration. Invest Ophthalmol Vis Sci 49: ARVO E-abstract

    Google Scholar 

  105. Justilien V et al (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48(10):4407–4420

    Article  PubMed  Google Scholar 

  106. Imamura Y et al (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103(30):11282–11287

    Article  PubMed  CAS  Google Scholar 

  107. Ballinger SW et al (1999) Hydrogen peroxide causes significant mitochondrial DNA damage in human RPE cells. Exp Eye Res 68(6):765–772

    Article  PubMed  CAS  Google Scholar 

  108. Jarrett SG, Boulton ME (2007) Poly(ADP-ribose) polymerase offers protection against oxidative and alkylation damage to the nuclear and mitochondrial genomes of the retinal pigment epithelium. Ophthalmic Res 39(4):213–223

    Article  PubMed  CAS  Google Scholar 

  109. Schutt F et al (2007) Accumulation of A2-E in mitochondrial membranes of cultured RPE cells. Graefes Arch Clin Exp Ophthalmol 245(3):391–398

    Article  PubMed  CAS  Google Scholar 

  110. Hayasaka S (1989) Ageing changes in lipofuscin, lysosomes and melanin in the macular area of human retina and choroid. Jpn J Ophthalmol 33(1):36–42

    PubMed  CAS  Google Scholar 

  111. Boulton M et al (1994) Regional variation and age-related changes of lysosomal enzymes in the human retinal pigment epithelium. Br J Ophthalmol 78(2):125–129

    Article  PubMed  CAS  Google Scholar 

  112. Ogawa T et al (2005) Changes in the spatial expression of genes with ageing in the mouse RPE/choroid. Mol Vis 11:380–386

    PubMed  CAS  Google Scholar 

  113. Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  PubMed  CAS  Google Scholar 

  114. Cuervo AM et al (2005) Autophagy and ageing: the importance of maintaining “clean” cells. Autophagy 1(3):131–140

    Article  PubMed  Google Scholar 

  115. Cuervo AM (2004) Autophagy: many paths to the same end. Mol Cell Biochem 263(1–2):55–72

    Article  PubMed  CAS  Google Scholar 

  116. Klionsky DJ et al (2007) How shall I eat thee? Autophagy 3(5):413–416

    PubMed  Google Scholar 

  117. Sohal RS (1981) Age pigments. Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  118. Terman A, Gustafsson B, Brunk UT (2007) Autophagy, organelles and ageing. J Pathol 211(2):134–143

    Article  PubMed  CAS  Google Scholar 

  119. Boulton M et al (1989) The formation of autofluorescent granules in cultured human RPE. Invest Ophthalmol Vis Sci 30(1):82–89

    PubMed  CAS  Google Scholar 

  120. Wassell J et al (1998) Fluorescence properties of autofluorescent granules generated by cultured human RPE cells. Invest Ophthalmol Vis Sci 39(8):1487–1492

    PubMed  CAS  Google Scholar 

  121. Nilsson SE et al (2003) Ageing of cultured retinal pigment epithelial cells: oxidative reactions, lipofuscin formation and blue light damage. Doc Ophthalmol 106(1):13–16

    Article  PubMed  Google Scholar 

  122. Burke JM, Skumatz CM (1998) Autofluorescent inclusions in long-term postconfluent cultures of retinal pigment epithelium. Invest Ophthalmol Vis Sci 39(8):1478–1486

    PubMed  CAS  Google Scholar 

  123. Krohne TU et al (2010) Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells. Exp Eye Res 90(3):465–471

    Article  PubMed  CAS  Google Scholar 

  124. Haralampus-Grynaviski NM et al (2003) Spectroscopic and morphological studies of human retinal lipofuscin granules. Proc Natl Acad Sci USA 100(6):3179–3184

    Article  PubMed  CAS  Google Scholar 

  125. Kiffin R, Bandyopadhyay U, Cuervo AM (2006) Oxidative stress and autophagy. Antioxid Redox Signal 8(1–2):152–162

    Article  PubMed  CAS  Google Scholar 

  126. Kurz T, Terman A, Brunk UT (2007) Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys 462(2):220–230

    Article  PubMed  CAS  Google Scholar 

  127. Wang AL et al (2009) Autophagy and exosomes in the aged retinal pigment epithelium: possible relevance to drusen formation and age-related macular degeneration. PLoS One 4(1):e4160

    Article  PubMed  Google Scholar 

  128. Winkler BS et al (1999) Oxidative damage and age-related macular degeneration. Mol Vis 5:32

    PubMed  CAS  Google Scholar 

  129. Beatty S et al (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134

    Article  PubMed  CAS  Google Scholar 

  130. Halliwell B, Gutteridge JM (2007) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  131. AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436

    Article  Google Scholar 

  132. Barker FM 2nd (2010) Dietary supplementation: effects on visual performance and occurrence of AMD and cataracts. Curr Med Res Opin 26(8):2011–2023

    Article  PubMed  CAS  Google Scholar 

  133. Liles MR, Newsome DA, Oliver PD (1991) Antioxidant enzymes in the ageing human retinal pigment epithelium. Arch Ophthalmol 109(9):1285–1288

    Article  PubMed  CAS  Google Scholar 

  134. Miyamura N et al (2004) Topographic and age-dependent expression of heme oxygenase-1 and catalase in the human retinal pigment epithelium. Invest Ophthalmol Vis Sci 45(5):1562–1565

    Article  PubMed  Google Scholar 

  135. Friedrichson T et al (1995) Vitamin E in macular and peripheral tissues of the human eye. Curr Eye Res 14(8):693–701

    Article  PubMed  CAS  Google Scholar 

  136. Castorina C et al (1992) Lipid peroxidation and antioxidant enzymatic systems in rat retina as a function of age. Neurochem Res 17(6):599–604

    Article  PubMed  CAS  Google Scholar 

  137. Beatty S et al (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42(2):439–446

    PubMed  CAS  Google Scholar 

  138. Maeda A, Crabb JW, Palczewski K (2005) Microsomal glutathione S-transferase 1 in the retinal pigment epithelium: protection against oxidative stress and a potential role in ageing. Biochemistry 44(2):480–489

    Article  PubMed  CAS  Google Scholar 

  139. Liao JH, Lee JS, Chiou SH (2002) C-terminal lysine truncation increases thermostability and enhances chaperone-like function of porcine alphaB-crystallin. Biochem Biophys Res Commun 297(2):309–316

    Article  PubMed  CAS  Google Scholar 

  140. Organisciak D et al (2006) Genetic, age and light mediated effects on crystallin protein expression in the retina. Photochem Photobiol 82(4):1088–1096

    Article  PubMed  CAS  Google Scholar 

  141. Jarrett SG, Albon J, Boulton M (2006) The contribution of DNA repair and antioxidants in determining cell type-specific resistance to oxidative stress. Free Radic Res 40(11):1155–1165

    Article  PubMed  CAS  Google Scholar 

  142. Crawford DR, Davies KJ (1994) Adaptive response and oxidative stress. Environ Health Perspect 102(Suppl 10):25–28

    Article  PubMed  Google Scholar 

  143. Booij JC et al (2010) The dynamic nature of Bruch’s membrane. Prog Retin Eye Res 29(1):1–18

    Article  PubMed  CAS  Google Scholar 

  144. Curcio CA et al (2009) Ageing, age-related macular degeneration, and the response-to-retention of apolipoprotein B-containing lipoproteins. Prog Retin Eye Res 28(6):393–422

    Article  PubMed  CAS  Google Scholar 

  145. Guymer R, Luthert P, Bird A (1999) Changes in Bruch’s membrane and related structures with age. Prog Retin Eye Res 18(1):59–90

    Article  PubMed  CAS  Google Scholar 

  146. Hageman GS, Mullins RF (1999) Molecular composition of drusen as related to substructural phenotype. Mol Vis 5:28

    PubMed  CAS  Google Scholar 

  147. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G, Hauser MA, Rickman CB, Bok D, Hageman GS, Johnson LV (2010) The pivotal role of the complement system in ageing and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29(2):95–112

    Article  PubMed  CAS  Google Scholar 

  148. Bird AC (1991) Doyne Lecture. Pathogenesis of retinal pigment epithelial detachment in the elderly; the relevance of Bruch’s membrane change. Eye (Lond) 5:1–12

    Article  Google Scholar 

  149. Chong NH et al (2005) Decreased thickness and integrity of the macular elastic layer of Bruch’s membrane correspond to the distribution of lesions associated with age-related macular degeneration. Am J Pathol 166(1):241–251

    Article  PubMed  Google Scholar 

  150. Ugarte M, Hussain AA, Marshall J (2006) An experimental study of the elastic properties of the human Bruch’s membrane-choroid complex: relevance to ageing. Br J Ophthalmol 90(5):621–626

    Article  PubMed  CAS  Google Scholar 

  151. Handa JT et al (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40(3):775–779

    PubMed  CAS  Google Scholar 

  152. Hewitt AT, Nakazawa K, Newsome DA (1989) Analysis of newly synthesized Bruch’s membrane proteoglycans. Invest Ophthalmol Vis Sci 30(3):478–486

    PubMed  CAS  Google Scholar 

  153. Marshall J et al (1998) Ageing and Bruch’s membrane. In: Marmor MF, Wolfensberger TJ (eds) The retinal pigment epithelium. Oxford University Press, New York/Oxford, pp 669–692

    Google Scholar 

  154. Friedman DS et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  155. Martin JE, Sheaff MT (2007) The pathology of ageing: concepts and mechanisms. J Pathol 211(2):111–113

    Article  PubMed  CAS  Google Scholar 

  156. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37(7):1236–1249

    PubMed  CAS  Google Scholar 

  157. Solbach U et al (1997) Imageing of retinal autofluorescence in patients with age-related macular degeneration. Retina 17(5):385–389

    Article  PubMed  CAS  Google Scholar 

  158. Ambati J et al (2003) An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nat Med 9(11):1390–1397

    Article  PubMed  CAS  Google Scholar 

  159. Malek G et al (2005) Apolipoprotein E allele-dependent pathogenesis: a model for age-related retinal degeneration. Proc Natl Acad Sci USA 102(33):11900–11905

    Article  PubMed  CAS  Google Scholar 

  160. Bird A, Marshall J (1986) Retinal pigment epithelial detachments in the elderly. Trans Ophthalmol Soc UK 105:674–682

    PubMed  Google Scholar 

  161. Archer D (1983) Retinal neovascularization. Trans Ophth­almol Soc UK 103:2–26

    PubMed  Google Scholar 

  162. Eagle RC Jr (1984) Mechanisms of maculopathy. Ophthal­mology 91(6):613–625

    PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Lynn Shaw for the artwork and Prajitha Thampi, Haripriya Vittal Rao, Alexander Podlaski and Sayak Mitter for proofreading this manuscript. The author’s research is supported by NIH grant EY019688 and AHAF grant M2009024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Boulton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boulton, M.E. (2013). Ageing of the Retina and Retinal Pigment Epithelium. In: Holz, F., Pauleikhoff, D., Spaide, R., Bird, A. (eds) Age-related Macular Degeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22107-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22107-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22106-4

  • Online ISBN: 978-3-642-22107-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics