Skip to main content

Image Quality Assessment Based on Intrinsic Mode Function Coefficients Modeling

  • Conference paper
Digital Information and Communication Technology and Its Applications (DICTAP 2011)

Abstract

Reduced reference image quality assessment (RRIQA) methods aim to assess the quality of a perceived image with only a reduced cue from its original version, called ”reference image”. The powerful advantage of RR methods is their ”General-purpose”. However, most introduced RR methods are built upon a non-adaptive transform models. This can limit the scope of RR methods to a small number of distortion types. In this work, we propose a bi-dimensional empirical mode decomposition-based RRIQA method. First, we decompose both, reference and distorted images, into Intrinsic Mode Functions (IMF), then we use the Generalized Gaussian Density (GGD) to model IMF coefficients. Finally, the distortion measure is computed from the ”fitting errors”, between the empirical and the theoretical IMF histograms, using the Kullback Leibler Divergence (KLD). In order to evaluate the performance of the proposed method, two approaches have been investigated : the logistic function-based regression and the well known Support vector machine-based classification. Experimental results show a high correlation between objective and subjective scores.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. UIT-R Recommendation BT. 500-10,Méthodologie d’évaluation subjective de la qualité des images de télévision. tech. rep., UIT, Geneva, Switzerland (2000)

    Google Scholar 

  2. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing 13(4), 1624–1639 (2004)

    Article  Google Scholar 

  3. Wang, Z., Sheikh, H.R., Bovik, A.C.: No-reference perceptual quality assessment of JPEG compressed images. In: IEEE International Conference on Image Processing, pp. 477–480 (2002)

    Google Scholar 

  4. Gunawan, I.P., Ghanbari, M.: Reduced reference picture quality estimation by using local harmonic amplitude information. In: Proc. London Commun. Symp., pp. 137–140 (September 2003)

    Google Scholar 

  5. Kusuma, T.M., Zepernick, H.-J.: A reduced-reference perceptual quality metric for in-service image quality assessment. In: Proc. Joint 1st Workshop Mobile Future and Symp. Trends Commun., pp. 71–74 (October 2003)

    Google Scholar 

  6. Carnec, M., Le Callet, P., Barba, D.: An image quality assessment method based on perception of structural information. In: Proc. IEEE Int. Conf. Image Process., vol. 3, pp. 185–188 (September 2003)

    Google Scholar 

  7. Carnec, M., Le Callet, P., Barba, D.: Visual features for image quality assessment with reduced reference. In: Proc. IEEE Int. Conf. Image Process., vol. 1, pp. 421–424 (September 2005)

    Google Scholar 

  8. Wang, Z., Simoncelli, E.: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model. In: Proc. of SPIE Human Vision and Electronic Imaging, pp. 149–159 (2005)

    Google Scholar 

  9. Foley, J.: Human luminence pattern mechanisms: Masking experiments require a new model. J. of Opt. Soc. of Amer. A 11(6), 1710–1719 (1994)

    Article  Google Scholar 

  10. Huang, N.E., Shen, Z., Long, S.R., et al.: The empirical mode decomposition and the hilbert spectrum for non-linear and non-stationary time series analysis. Proc. Roy. Soc. Lond. A,. 454, 903–995 (1998)

    Google Scholar 

  11. Nunes, J., Bouaoune, Y., Delechelle, E., Niang, O., Bunel, P.: Image analysis by bidimensional empirical mode decomposition. Image and Vision Computing 21(12), 1019–1026 (2003)

    Article  MATH  Google Scholar 

  12. Taghia, J., Doostari, M., Taghia, J.: An Image Watermarking Method Based on Bidimensional Empirical Mode Decomposition. In: Congress on Image and Signal Processing (CISP 2008), pp. 674–678 (2008)

    Google Scholar 

  13. Andaloussi, J., Lamard, M., Cazuguel, G., Tairi, H., Meknassi, M., Cochener, B., Roux, C.: Content based Medical Image Retrieval: use of Generalized Gaussian Density to model BEMD IMF. In: World Congress on Medical Physics and Biomedical Engineering, vol. 25(4), pp. 1249–1252 (2009)

    Google Scholar 

  14. Wan, J., Ren, L., Zhao, C.: Image Feature Extraction Based on the Two-Dimensional Empirical Mode Decomposition. In: Congress on Image and Signal Processing, CISP 2008, vol. 1, pp. 627–631 (2008)

    Google Scholar 

  15. Linderhed, A.: Variable sampling of the empirical mode decomposition of twodimensional signals. Int. J. Wavelets Multresolution Inform. Process. 3, 435–452 (2005)

    Article  MATH  Google Scholar 

  16. Damerval, C., Meignen, S., Perrier, V.: A fast algorithm for bidimensional EMD. IEEE Sig. Process. Lett. 12, 701–704 (2005)

    Article  Google Scholar 

  17. Bhuiyan, S., Adhami, R., Khan, J.: A novel approach of fast and adaptive bidimensional empirical mode decomposition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, 2008 (ICASSP 2008), pp. 1313–1316 (2008)

    Google Scholar 

  18. Van de Wouwer, G., Scheunders, P., Van Dyck, D.: Statistical texture characterization from discrete wavelet representations. IEEE transactions on image processing 8(4), 592–598 (1999)

    Article  Google Scholar 

  19. Sheikh, H., Wang, Z., Cormack, L., Bovik, A.: LIVE image quality assessment database. 2005-2010), http://live.ece.utexas.edu/research/quality

  20. Rohaly, A., Libert, J., Corriveau, P., Webster, A., et al.: Final report from the video quality experts group on the validation of objective models of video quality assessment. ITU-T Standards Contribution COM, pp. 9–80

    Google Scholar 

  21. Demirkesen, C., Cherifi, H.: A comparison of multiclass SVM methods for real world natural scenes. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 752–763. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Saad, M., Bovik, A.C., Charrier, C.: A DCT statistics-based blind image quality index. IEEE Signal Processing Letters, 583–586 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ait Abdelouahad, A., El Hassouni, M., Cherifi, H., Aboutajdine, D. (2011). Image Quality Assessment Based on Intrinsic Mode Function Coefficients Modeling. In: Cherifi, H., Zain, J.M., El-Qawasmeh, E. (eds) Digital Information and Communication Technology and Its Applications. DICTAP 2011. Communications in Computer and Information Science, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21984-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21984-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21983-2

  • Online ISBN: 978-3-642-21984-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics