Modeling Engagement Dynamics in Spelling Learning

  • Gian-Marco Baschera
  • Alberto Giovanni Busetto
  • Severin Klingler
  • Joachim M. Buhmann
  • Markus Gross
Conference paper

DOI: 10.1007/978-3-642-21869-9_7

Volume 6738 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Baschera GM., Busetto A.G., Klingler S., Buhmann J.M., Gross M. (2011) Modeling Engagement Dynamics in Spelling Learning. In: Biswas G., Bull S., Kay J., Mitrovic A. (eds) Artificial Intelligence in Education. AIED 2011. Lecture Notes in Computer Science, vol 6738. Springer, Berlin, Heidelberg

Abstract

In this paper, we introduce a model of engagement dynamics in spelling learning. The model relates input behavior to learning, and explains the dynamics of engagement states. By systematically incorporating domain knowledge in the preprocessing of the extracted input behavior, the predictive power of the features is significantly increased. The model structure is the dynamic Bayesian network inferred from student input data: an extensive dataset with more than 150 000 complete inputs recorded through a training software for spelling. By quantitatively relating input behavior and learning, our model enables a prediction of focused and receptive states, as well as of forgetting.

Keywords

engagement modeling feature processing domain knowledge dynamic Bayesian network learning spelling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gian-Marco Baschera
    • 1
  • Alberto Giovanni Busetto
    • 1
    • 2
  • Severin Klingler
    • 1
  • Joachim M. Buhmann
    • 1
    • 2
  • Markus Gross
    • 1
  1. 1.Department of Computer ScienceETH ZürichSwitzerland
  2. 2.Competence Center for Systems Physiology and Metabolic DiseasesZürichSwitzerland