Affect Detection from Multichannel Physiology during Learning Sessions with AutoTutor

  • M. S. Hussain
  • Omar AlZoubi
  • Rafael A. Calvo
  • Sidney K. D’Mello
Conference paper

DOI: 10.1007/978-3-642-21869-9_19

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6738)
Cite this paper as:
Hussain M.S., AlZoubi O., Calvo R.A., D’Mello S.K. (2011) Affect Detection from Multichannel Physiology during Learning Sessions with AutoTutor. In: Biswas G., Bull S., Kay J., Mitrovic A. (eds) Artificial Intelligence in Education. AIED 2011. Lecture Notes in Computer Science, vol 6738. Springer, Berlin, Heidelberg

Abstract

It is widely acknowledged that learners experience a variety of emotions while interacting with Intelligent Tutoring Systems (ITS), hence, detecting and responding to emotions might improve learning outcomes. This study uses machine learning techniques to detect learners’ affective states from multichannel physiological signals (heart activity, respiration, facial muscle activity, and skin conductivity) during tutorial interactions with AutoTutor, an ITS with conversational dialogues. Learners were asked to self-report (both discrete emotions and degrees of valence/arousal) the affective states they experienced during their sessions with AutoTutor via a retrospective judgment protocol immediately after the tutorial sessions. In addition to mapping the discrete learning-centered emotions (e.g., confusion, frustration, etc) on a dimensional valence/arousal space, we developed and validated an automatic affect classifier using physiological signals. Results indicate that the classifier was moderately successful at detecting naturally occurring emotions during the AutoTutor sessions.

Keywords

Affective computing emotion AutoTutor multichannel physiology learning interaction self reports 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. S. Hussain
    • 1
    • 2
  • Omar AlZoubi
    • 2
  • Rafael A. Calvo
    • 2
  • Sidney K. D’Mello
    • 3
  1. 1.National ICT Australia (NICTA)EveleighAustralia
  2. 2.School of Electrical and Information EngineeringUniversity of SydneyAustralia
  3. 3.Institute for Intelligent SystemsUniversity of MemphisMemphisUSA

Personalised recommendations