Skip to main content

Representations of Super Lie Groups: Some Remarks

  • Chapter
  • First Online:
Supersymmetry in Mathematics and Physics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2027))

  • 2091 Accesses

Abstract

We give a quick review of the basic aspects of the theory of representations of super Lie groups on finite-dimensional vector spaces. In particular, the various possible approaches to representations of super Lie groups, super Harish–Chandra pairs and actions are analyzed. A sketch of a general setting for induced representation is also presented and some basic examples of induced representations (i.e., special and odd induction) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Balduzzi, C. Carmeli, G. Cassinelli, in Super G-Spaces. Symmetry in Mathematics and Physics, Contemporary Mathematics 490 (AMS, RI, 2009)

    Google Scholar 

  2. C. Bartocci, U. Bruzzo, D.H. Ruipérez, in The Geometry of Supermanifolds. Mathematics and Its Applications, vol. 71 (Kluwer, Dordrecht, 1991)

    Google Scholar 

  3. M. Batchelor, The structure of supermanifolds. Trans. Am. Math. Soc. 253, 329–338 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Carmeli, G. Cassinelli, A. Toigo, V.S. Varadarajan, Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles. Comm. Math. Phys. 263(1), 217–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Carmeli, L. Caston, R. Fioresi, Foundations of Super Geometry. EMS Ser. Lect. Math. (European Mathematical Society, Zurich, 2011)

    Google Scholar 

  6. P. Deligne, J.W. Morgan, in Notes on Supersymmetry (following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, vols. 1, 2 (AMS, RI, 1999), pp. 41–97

    Google Scholar 

  7. R. Fioresi, M.A. Lledó, V.S. Varadarajan, The Minkowski and conformal superspaces. J. Math. Phys. 48(11), 113505 (2007)

    Google Scholar 

  8. C. Fronsdal, T. Hirai, in Unitary Representations of Super Groups. Essays on Supersymmetry (Math. Phys. Stud. 8) (Reidel, Dordrecht, 1986), pp. 15–68

    Google Scholar 

  9. A. Grothendieck, Résumé des résultats essentiels dans la théorie des produits tensoriels topologiques et des espaces nucléaires. Ann. Inst. Fourier Grenoble 4(1952), 73–112 (1954)

    MathSciNet  Google Scholar 

  10. A. Klimyk, K. Schmüdgen, in Quantum Groups and Their Representations. Texts and Monographs in Physics (Springer, Berlin, 1997)

    Google Scholar 

  11. I. Kolář, P.W. Michor, J. Slovák, Natural Operations in Differential Geometry (Springer, Berlin, 1993)

    MATH  Google Scholar 

  12. B. Kostant, Graded Manifolds, Graded Lie Theory, and Prequantization. Differential geometrical methods in mathematical physics (Proc. Sympos., University of Bonn, Bonn, 1975). Lecture Notes in Mathematics, vol. 570 (Springer, Berlin, 1977), pp. 177–306

    Google Scholar 

  13. J.-L. Koszul, Graded manifolds and graded Lie algebras, Proceedings of the International Meeting on Geometry and Physics, Florence, 1982 (Bologna) (Pitagora, 1983), pp. 71–84

    Google Scholar 

  14. D.A. Leĭtes, Introduction to the theory of supermanifolds. Uspekhi Mat. Nauk 35, 3–57 (1980)

    MATH  Google Scholar 

  15. Y.I. Manin, in Gauge Field Theory and Complex Geometry, Translated from the 1984 Russian original by N. Koblitz, J.R. King, With an appendix by Sergei Merkulov. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 289, 2nd edn. (Springer, Berlin, 1997)

    Google Scholar 

  16. H. Salmasian, Unitary representations of nilpotent super Lie groups. Comm. Math. Phys. 297(1), 189–227 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic, New York, 1967), pp. xvi + 624

    Google Scholar 

  18. V.S. Varadarajan, Supersymmetry for Mathematicians: An Introduction. Courant Lecture Notes in Mathematics, vol. 11 (New York University Courant Institute of Mathematical Sciences, New York, 2004)

    Google Scholar 

  19. G. Warner, in Harmonic Analysis on Semisimple Lie Groups 1. Grundlehren der mathematischen Wissenschaften, vol. 188 (Springer, Berlin, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Carmeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carmeli, C., Cassinelli, G. (2011). Representations of Super Lie Groups: Some Remarks. In: Ferrara, S., Fioresi, R., Varadarajan, V. (eds) Supersymmetry in Mathematics and Physics. Lecture Notes in Mathematics(), vol 2027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21744-9_3

Download citation

Publish with us

Policies and ethics