Skip to main content

Rhizosphere Microorganisms

  • Chapter
  • First Online:
  • 1427 Accesses

Abstract

Plant roots are the major source of available carbon in the soil. Therefore, soil bacteria maintain adaptive traits which enable them to exploit this highly competitive niche, yet microbial associations are inherent to plant adaptation to the highly heterogeneous soil environment. The rhizosphere has been, for many years, the focus of intense basic and applied research, aimed at modulating and gaining control over this environment to promote plant health and development. Such studies have revealed the high complexity of plant-associated microbial communities and the many factors that influence root-associated bacterial community composition, including the plant species and growth stage, as well as the soil physical, chemical, and biological characteristics. The high availability of carbon promotes copiotrophic/zymogenic life style in rhizosphere microorganisms. High diversity is maintained due to the prevalence of multiple micro-niches and utilization of different competition strategies. This may be fundamental to some of the most important plant growth and health promoting effect of root-microbe associations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adesemoye AO, Torbert HA, Klopper JW (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    Article  PubMed  CAS  Google Scholar 

  • Ager D, Evans S, Li H, Killey AK, van der Gast CJ (2010) Anthropogenic disturbance affects the structure of bacterial communities. Environ Microbiol 12:670–678

    Article  PubMed  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  PubMed  CAS  Google Scholar 

  • Akiyama K, Matsuzaki KI, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  PubMed  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (1991) Microbial production of plant hormones. Plant Soil 133:1–8

    Article  CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  PubMed  CAS  Google Scholar 

  • Bashan Y, Puentes ME, Rodriguez-Mendoza MZ, Toledo G, Holguin G, ferrera-Cerrato R, Pedrin S (1995) Survival of Azospirillum brasilense in bulk soil and rhizosphere of 23 soil types. Appl Environ Microbiol 61:1938–1945

    PubMed  CAS  Google Scholar 

  • Baumgarte S, Tebbe CC (2005) Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize MON810 and its effect on bacterial communities in the maize rhizosphere. Mol Ecol 14:2539–2551

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Ebrel L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Opelt K, Zachow CH, Lottmann J, Gotz M, Costa R, Smalla K (2006) The rhizosphere effect on bacteria antagonistic toward the pathogenic fungus Verticillium differs depending on plant species and site. FEMS Microbiol Ecol 56:250–261

    Article  PubMed  CAS  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roland V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  CAS  Google Scholar 

  • Blume E, Bischoff M, Reichert JM, Moorman T, Konopka A, Turco RF (2002) Surface and subsurface microbial biomass, community structure and metabolic activity as a function of soil depth and season. Appl Soil Ecol 20:171–181

    Article  Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 95–140

    Google Scholar 

  • Brito Alvarez MA, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61:194–199

    Google Scholar 

  • Busquets M, Calvet C, Camprubí A, Estaún V (2010) Differential effects of two species of arbuscular mycorrhiza on the growth and water relations of Spartium junceum and Anthyllis cytisoides. Symbiosis 52:95–101

    Article  Google Scholar 

  • Çakmakçi R, Dönmez MF, Ertürk Y, Erat M, Haznedar A, Sekban R (2010) Diversity and metabolic potential of culturable bacteria from the rhizosphere of Turkish tea grown in acidic soils. Plant Soil 332:299–318

    Article  CAS  Google Scholar 

  • Caravaca F, Barea JM, Palenzuela J, Figueroa D, Alguacil MM, Roldán A (2003) Establishment of shrub species in a degraded semiarid site alter inoculation with native or allochtonous arbuscular mycorrhizal fungi. Appl Soil Ecol 22:103–111

    Article  Google Scholar 

  • Carminati A, Moradi AB, Vetterlein D, Vontobel P, Lehrmann E, Weller U, Vogel HJ, Oswald SE (2010) Dynamics of soil water content in the rhizosphere. Plant Soil 332:163–176

    Article  CAS  Google Scholar 

  • Castro MS, Fontes W (2005) Plant defence and antimicrobial peptides. Protein Pept Lett 12:11–16

    Article  Google Scholar 

  • Castro-Sowinski S, Herschkovitz Y, Okon Y, Jurkevitch E (2007) Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol Lett 276:1–11

    Article  PubMed  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting Rhizobacteria to promote soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Ceccarelli N, Curadi M, Martelloni L, Sbrana C, Picciarelli P, Giovannetti M (2010) Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. Plant Soil 335:311–323

    Article  CAS  Google Scholar 

  • Cheng W, Zhang Q, Coleman DC, Carroll CR, Hoffman CA (1996) Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem 28:1283–1288

    Article  CAS  Google Scholar 

  • Chiarini L, Giovannelli V, Bevivin A, Dalmastri C, Tabacchioni S (2000) Different portions of the maize root system host Burkholderia cepacia populations with different degrees of genetic polymorphism. Environ Microbiol 2:111–118

    Article  PubMed  CAS  Google Scholar 

  • Chung H, Zak D, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Glob Change Biol 13:980–989

    Article  Google Scholar 

  • Clayton SJ, Clegg CD, Murray PJ, Gregory PJ (2005) Determination of the impact of continuous defoliation of Lolium perenne and Trifolium repens on bacterial and fungal community structure in the rhizosphere soil. Biol Fertil Soils 41:109–115

    Article  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sesstisch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Dandurand LM, Schotzko DJ, Knudsen GR (1997) Spatial patterns of rhizoplane populations of Pseudomonas fluorecens. Appl Environ Microbiol 63:3211–3217

    PubMed  CAS  Google Scholar 

  • Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847

    Article  PubMed  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157:361–379

    Article  CAS  Google Scholar 

  • Dutta S, Podile AR (2010) Plant growth promoting rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36:232–244

    Article  PubMed  Google Scholar 

  • Emmert EAB, Handelsman J (1999) Biocontrol of plant disease: a (Gram-) positive perspective. FEMS Microbiol Lett 171:1–9

    Article  PubMed  CAS  Google Scholar 

  • Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of drought stress in common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl Soil Ecol 40:182–188

    Article  Google Scholar 

  • Folman LB, Postma J, van Veen JA (2001) Ecophysiological characterization of rhizosphere bacterial communities at different root locations and plant developmental stages of cucumber grown on rockwool. Microb Ecol 42:586–597

    Article  PubMed  CAS  Google Scholar 

  • Folman LB, Postma J, van Veen JA (2003) Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits. Microb Ecol 45:72–87

    Article  PubMed  CAS  Google Scholar 

  • Fuchs JG (2010) Interactions between beneficial and farmful microorganisms: from the composting process to compost application. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work: from wastes to resources. Springer, Berlin/Heidelberg, pp 213–230

    Chapter  Google Scholar 

  • Fürnkranz M, Müller H, Berg G (2009) Characterization of plant growth promoting bacteria from crops in Bolivia. J Plant Dis Protect 116:149–155

    Google Scholar 

  • Gamalero E, Lingua G, Capri FG, Fusconi A, Berta G, Lemanceau P (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, Potsma J, van Veen JA, van Elsas JD (2006) Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ Microbiol 8:233–246

    Article  PubMed  CAS  Google Scholar 

  • Garbeva P, van Elsas JD, van Veen JA (2008) Rhizosphere microbial community and its response to plant species and soil history. Plant Soil 302:19–32

    Article  CAS  Google Scholar 

  • Gomes NCM, Cleary DFR, Pinto FN, Egas C, Almeida A, Cunha A, Mendoça-Hagler LCS, Smalla K (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One 5:e14065

    Article  PubMed  CAS  Google Scholar 

  • Götz M, Gomes NC, Dratwinski A, Costa R, Berg G, Peixoto R, Mendoça-Hagler L, Smalla K (2006) Survival of gfp-tagged antagonistic bacteria in the rhizosphere of tomato plants and their effects on the indigenous bacterial community. FEMS Microbiol Ecol 56:207–218

    Article  PubMed  CAS  Google Scholar 

  • Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Green SJ, Inbar E, Michel FC, Hadar Y, Minz D (2006) Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983

    Article  PubMed  CAS  Google Scholar 

  • Green SJ, Michel FC, Hadar Y, Minz D (2007) Contrasting patterns of seed and root colonization by bacteria from the genus Chrysobacterium and from the family Oxalobacteraceae. ISME J 1:291–299

    PubMed  CAS  Google Scholar 

  • Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2003) Influence of depth and sampling time on bacterial community structure in an upland grassland soil. FEMS Microbiol Ecol 43:35–43

    Article  PubMed  CAS  Google Scholar 

  • Gyaneshwar P, Naresh Kumar G, Parekh LJ, Poole PS (2002) Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245:83–93

    Article  CAS  Google Scholar 

  • Habte M, Zhang YC, Schmitt DP (1999) Effectiveness of Glomus species in protecting white clover against nematode damage. Can J Bot 77:135–139

    Google Scholar 

  • Haichar FZ, Marol C, Berge O, Rangel-Castro JI, Prosser JI, Balesdent J et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Hargreaves JC, Adl MS, Warman PR (2008) A review of the use of composted municipal solid waste in agriculture. Agric Ecosyst Environ 123:1–14

    Article  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • Hoitink HAJ, Boehm MJ (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  PubMed  CAS  Google Scholar 

  • Hoitink HAJ, Stone AG, Han DY (1997) Suppression of plant diseases by composts. Hort Sci 32:184–187

    Google Scholar 

  • Houlden A, Timmis-Wilson M, Day MJ, Bailey MJ (2008) Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops. FEMS Microbiol Ecol 65:193–201

    Article  PubMed  CAS  Google Scholar 

  • Hütsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source of carbon turnover in soils. J Plant Nutr Soil Sci 165:397–407

    Article  Google Scholar 

  • Inbar E, Green SJ, Hadar Y, Minz D (2005) Competing factors of compost concentration and proximity to root affect the distribution of Streptomyces. Microb Ecol 50:73–81

    Article  PubMed  Google Scholar 

  • Jayachandran K, Shetty KG (2003) Growth response and phosphorus uptake by arbuscular mycorrhizae of wet prairie sawgrass. Aquat Bot 76:281–290

    Article  CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33

    Article  CAS  Google Scholar 

  • Jousset A, Scheu S, Bonkowski M (2008) Secondary metabolite production facilitates establishment of rhizobacteria by reducing both protozoan predation and the competitive effects of indigenous bacteria. Funct Ecol 22:714–719

    Article  Google Scholar 

  • Kapulnik Y, Okon Y (2002) Plant growth-promotion by rhizospheric bacteria. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 869–886

    Google Scholar 

  • Kielak A, Pijl AS, van Veen JA, Kowalchuk GA (2008) Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol 63:372–382

    Article  PubMed  CAS  Google Scholar 

  • Koch AL (1990) Diffusion- the crucial process in any aspects of the biology of bacteria. Adv Microb Ecol 11:37–70

    Article  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2008) Plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungi modify alleviation biochemical mechanisms in water-stressed plants. Funct Plant Biol 35:141–151

    Article  CAS  Google Scholar 

  • Kohler J, Hernández JA, Caravaca F, Roldán A (2009) Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environ Exp Bot 65:245–252

    Article  CAS  Google Scholar 

  • Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PGL, van Veen JA (2002) Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Anton Leeuw Int J G 81:509–520

    Article  Google Scholar 

  • Kurakov AV, Kostina NV (2001) Spatial peculiarities in the colonization of the plant rhizoplane by microscopic fungi. Microbiology 70:165–174

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Schneckenberger K (2004) Review of estimation of plant rhizodeposition and their contribution to soil organic matter formation. Arch Agron Soil Sci 50:115–132

    Article  Google Scholar 

  • Latour X, Philippot L, Corberand T, Lemanceau P (1999) The establishment of an introduced community of fluorescent pseudomonads in the soil and in the rhizosphere is affected by the soil type. FEMS Microbiol Ecol 30:163–170

    Article  PubMed  CAS  Google Scholar 

  • Lazarovitz G (2001) Management of soil-borne plant pathogens with organic soil amendments: a disease control strategy salvaged from the past. Can J Plant Pathol 23:1–7

    Article  Google Scholar 

  • Liddycoat SM, Greenberg BM, Wolyn DJ (2009) The effect of plant growth-promoting rhizobacteria on asparagus seedlings and germinating seeds subjected to water stress under green house conditions. Can J Microbiol 55:388–394

    Article  PubMed  CAS  Google Scholar 

  • Liljeroth E, Bååth E (1988) Bacteria and fungi on roots of different barley varieties (Hordeum vulgare L.). Biol Fertil Soil 7:53–57

    Article  Google Scholar 

  • Liljeroth E, Burgers SLGE, van Veen JA (1991) Changes in bacterial populations along roots of wheat (Triticum aestivum L.) seedlings. Biol Fertil Soil 10:276–280

    Article  Google Scholar 

  • Lindedam J, Magid J, Poulsen P, Luxhøi J (2009) Tissue architecture and soil fertility controls on decomposer communities and decomposition of roots. Soil Biol Biochem 41:1040–1049

    Article  CAS  Google Scholar 

  • Lottmann J, Heuer H, de Vries J, Mahn A, Düring K, Wackernagel W, Smalla K, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49

    Article  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  PubMed  CAS  Google Scholar 

  • Lynch JM (2002) Resilience of the rhizosphere to anthropogenic disturbance. Biodegradation 13:21–27

    Article  PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. Microb Ecol 60:157–166

    Article  PubMed  Google Scholar 

  • Marilley L, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Marilley L, Vogt G, Blanc M, Aragno M (1998) Bacterial diversity in bulk soil and rhizosphere fractions of Lolium perenne and Trifolium repens as reveled by PCR restriction analysis of 16S rDNA. Plant Soil 198:219–224

    Article  CAS  Google Scholar 

  • Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant and Soil 251:279–289

    Article  CAS  Google Scholar 

  • Marschner P, Rengel Z (2007) Contribution of rhizosphere interactions to soil biological fertility. In: Abbott LK, Murphy DV (eds) soil biological fertility. Springer, Netherlands, pp 81–98

    Google Scholar 

  • Marschner P, Crowley DE, Lieberei R (2001a) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302

    Article  CAS  Google Scholar 

  • Marschner P, Yang CH, Lieberie R, Crowley DE (2001b) Soil and plant specific effect on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Marschner P, Neumann G, Kania A, Weisskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174

    Article  CAS  Google Scholar 

  • Martinez-Toledo MV, Gonzalez-Lopez J, Moreno RJ, Ramos-Cormenzana A (1988) Effect of inoculation with Azotobacter chroococcum on nitrogenase activity of Zea mays roots grown in agricultural soils under aseptic and non-sterile conditions. Biol Fertil Soil 6:170–173

    Google Scholar 

  • Marulanda A, Azcón R, Chaumount F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mayse L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    Article  PubMed  CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997) Agricultural intensification and ecosystem properties. Science 277:504–509

    Article  PubMed  CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  PubMed  CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y (ed) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Minz D, Green SJ, Ofek M, Hadar Y (2010) Compost microbial populations and interactions with plants. In: Insam H, Franke-Whittle I, Goberna M (eds) Microbes at work: from wastes to resources. Springer, Berlin/Hieldelberg

    Google Scholar 

  • Nautiyal CS, Johri JK, Singh HB (2002) Survival of the rhizosphere-competent biocontrol strain Pseudomonas fluorescence NBRI2650 in the soil and phytosphere. Can J Microbiol 48:588–601

    Article  CAS  Google Scholar 

  • Nelson EB (2004) Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42:271–309

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Römheld V (2002) Root-induced changes in the availability of nutrients in the rhizosphere. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 617–650

    Google Scholar 

  • Noble R, Coventry E (2005) Suppression of soil-borne plant diseases with composts: a review. Biocontrol Sci Technol 15:3–20

    Article  Google Scholar 

  • Normander B, Prosser JI (2000) Bacterial origin and community composition in the barley phytosphere as a function of habitat and pre-sowing conditions. Appl Environ Microbiol 66:4372–4377

    Article  PubMed  CAS  Google Scholar 

  • Ofek M (2011) Root bacterial community assemblage: basic knowledge gained from application-oriented studies. PhD thesis, The Hebrew University of Jerusalem, Jerusalem

    Google Scholar 

  • Ofek M, Hadar Y, Minz D (2009) Effects of compost amendment vs. single strain inoculation on root bacterial communities of young cucumber seedlings. Appl Environ Microbiol 75:6441–6450

    Article  PubMed  CAS  Google Scholar 

  • Or D, Semts BF, Wraith JM, Dechesne A, Friedman SP (2007) Physical constraints affecting bacterial habitats and activity in unsaturated porus media – a review. Adv Water Resour 30:1505–1527

    Article  Google Scholar 

  • Ortíz-Castro R, Martínez-Trujillo M, López-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509

    Article  PubMed  CAS  Google Scholar 

  • Osbourn AE (1996) Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821–1831

    PubMed  CAS  Google Scholar 

  • Paulitz TC, Belanger RR (2001) Biological control in greenhouse systems. Annu Rev Phytopathol 39:103–133

    Article  PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 1–18

    Google Scholar 

  • Power AG (2010) Ecosystem services and agriculture: tradeoffs and synergies. Phil Trans R Soc 365:2959–2971

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvett C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and pattlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341–361

    Article  CAS  Google Scholar 

  • Rabie GH (1998) Induction of fungal disease resistance in Vicia faba by dual inoculation with Rhizobium leguminosarum and vesicular-arbuscular mycorrhizal fungi. Mycopathologia 141:159–166

    Article  PubMed  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Ridder-Duine AS, Kowalchuk GA, Klein Gunnewiek PJA, Smant W, van Veen JA, de Boer W (2005) Rhizosphere bacterial community composition in natural stands of Carex arenaria (sand sedge) is determined by bulk soil community composition. Soil Biol Biochem 37:349–357

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Zaragoza S, González-Ruíz T, González-Lozano E, Lozada-Rojas A, Mayzlish-Gati E, Steinberger Y (2008) Vertical distribution of microbial communities under the canopy of two legume bushes in the Tehuacán desert, Mexico. Eur J Soil Ecol 44:373–380

    Google Scholar 

  • Roesti D, Gaur R, Johri BN, Imfeld G, Sharma S, Kawaljeet K, Aragno M (2006) Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol Biochem 38:1111–1120

    Article  CAS  Google Scholar 

  • Rovira AD, Bowen GD, Foster RC (1983) The significance of rhizosphere microflora and mycorrhizas in plant nutrition. In: Lauchli A, Bielski RL (eds) Encyclopedia of plant physiology: inorganic plant nutrition. Springer, Berlin/Heidelberg/New York, pp 61–93

    Chapter  Google Scholar 

  • Ruiz-Lozano JM, Collados C, Barea JM, Azcón R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 151:493–502

    Article  CAS  Google Scholar 

  • Ryne PR, Delhaize E, Jones DL (2001) Function and mechanisms of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–560

    Article  Google Scholar 

  • Sato a, Watanabe T, Unno Y, Purnomo E, Osaki M, Shinano T (2009) Analysis of diversity of diazotrophic bacteria associated with the rhizosphere of a tropical arbor, Melastoma malabathricum L. Microb Environ 24:81–87

    Article  Google Scholar 

  • Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G et al (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918

    Article  PubMed  CAS  Google Scholar 

  • Séguin V, Gagnon C, Courchesne F (2004) Changes in water extractable metals, pH and organic matter concentrations at the soil-root interface of forested soils. Plant Soil 260:1–17

    Article  Google Scholar 

  • Sen R (2003) The root–microbe–soil interface: new tools for sustainable plant production. New Phytol 157:391–398

    Article  Google Scholar 

  • Skene KR (2000) Pattern formation in cluster roots: some developmental and evolutionary considerations. Ann Bot 85:901–908

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Rostok N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  PubMed  CAS  Google Scholar 

  • Smit E, Leeflang P, Glandorf B, van Elsas JD, Wernars K (1999) Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl Environ Microbiol 65:2614–2621

    PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Soares CRFS, Siqueira JO (2008) Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soil. Biol Fertil Soils 44:833–841

    Article  CAS  Google Scholar 

  • Society R (2009) Reaping the benefits: science and the sustainable intensification of global agriculture. Marcel Dekker, London, 72

    Google Scholar 

  • Steidel A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770

    Article  CAS  Google Scholar 

  • Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13:637–648

    Article  PubMed  CAS  Google Scholar 

  • Tiquia SM, Lloyd J, Herms DA, Hoitink HAJ, Michel FC (2002) Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial community structure determined by analysis of TRFLPs of PCR-amplified 16S rRNA genes. Appl Soil Ecol 21:31–48

    Article  Google Scholar 

  • Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Uroz S, Buée M, Murat C, Fery-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol 2:281–288

    Article  CAS  Google Scholar 

  • Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934

    Article  Google Scholar 

  • Van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2083–2091

    Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engels R, Boller T, Wiemken A, Sanders IR (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • Van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol 157:525–537

    Article  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Rhijn P, Vanderleyden J (1995) The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142

    PubMed  Google Scholar 

  • Vivas A, Vörös I, Biró B, Campos E, Barea JM, Azcón R (2003) Symbiotic efficiency of autochthonous arbuscular mycorrhizal fungus (G. mosseae) and Brevibacillus sp. isolated from cadmium polluted soil under increasing cadmium levels. Environ Pollut 126:179–189

    Article  PubMed  CAS  Google Scholar 

  • Waisel Y, Eshel A (2002) Functional diversity of various constituents of a single root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 157–174

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat. Funct Plant Biol 30:483–491

    Article  Google Scholar 

  • Watt M, Hugenholtz P, White R, Vinall K (2006) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol 8:871–884

    Article  PubMed  Google Scholar 

  • Weisskopf L, Fromin N, Tomasi N, Aragno M, Martinoia E (2005) Secretion activity of white lupin’s cluster roots influences bacterial abundance, function and community structure. Plant Soil 268:181–194

    Article  CAS  Google Scholar 

  • Weisskopf L, Le Bayon RC, Kohler F, Page V, Jossi M, Gobat JM, Martinoia E, Aragno M (2008) Spatio-temporal dynamics of bacterial communities associated with two plant species differing in organic acid secretion: a one-year microcosm study on lupin and wheat. Soil Biol Biochem 40:1772–1780

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  • Will C, Thürmer A, Wollherr A, Nacke H, Herold N, Schrumpf M, Gutknecht J, Wubet T, Buscot F, Daniel R (2010) Horizon-specific bacterial community composition of German grassland soils, as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 76:6751–6759

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  PubMed  CAS  Google Scholar 

  • Zachow C, Tilcher R, Berg G (2008) Sugar beet-associated bacterial and fungal communities show a high indigenous antagonistic potential against plant pathogens. Microb Ecol 55:119–129

    Article  PubMed  Google Scholar 

  • Zhang W, Han DY, Dick WA, Davis KR, Hiotink HAJ (1998) Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Phytopathology 88:445–450

    Google Scholar 

  • Zhang W, Rickett TH, Kremen C, Carney K, Swinton SM (2007) Ecosystem services and dis-services to agriculture. Ecol Econ 64:253–260

    Article  Google Scholar 

  • Zhang H, Kim MS, Dowd SE, Shi H, Paré PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol plant Microbe interact 21:737–744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dror Minz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Minz, D., Ofek, M. (2012). Rhizosphere Microorganisms. In: Rosenberg, E., Gophna, U. (eds) Beneficial Microorganisms in Multicellular Life Forms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21680-0_7

Download citation

Publish with us

Policies and ethics