Skip to main content

Exploring the Zebra Finch Taeniopygia guttata as a Novel Animal Model for the Speech–Language Deficit of Fragile X Syndrome

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and presents with markedly atypical speech–language, likely due to impaired vocal learning. Although current models have been useful for studies of some aspects of FXS, zebra finch is the only tractable lab model for vocal learning. The neural circuits for vocal learning in the zebra finch have clear relationships to the pathways in the human brain that may be affected in FXS. Further, finch vocal learning may be quantified using software designed specifically for this purpose. Knockdown of the zebra finch FMR1 gene may ultimately enable novel tests of therapies that are modality-specific, using drugs or even social strategies, to ameliorate deficits in vocal development and function. In this chapter, we describe the utility of the zebra finch model and present a hypothesis for the role of FMRP in the developing neural circuitry for vocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbeduto L, Murphy MM, Kover ST, Giles ND, Karadottir S, Amman A, Bruno L, Kim JS, Schroeder S, Anderson JA, Nollin KA (2008) Signaling noncomprehension of language: a comparison of fragile X syndrome and Down syndrome. Am J Ment Retard 113:214–230

    Article  PubMed  Google Scholar 

  • Antar LN, Afroz R, Dictenberg JB, Carroll RC, Bassell GJ (2004) Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 24:2648–2655

    Article  PubMed  CAS  Google Scholar 

  • Antar LN, Dictenberg JB, Plociniak M, Afroz R, Bassell GJ (2005) Localization of FMRP-associated mRNA granules and requirement of microtubules for activity-dependent trafficking in hippocampal neurons. Genes Brain Behav 4:350–359

    Article  PubMed  CAS  Google Scholar 

  • Antar LN, Li C, Zhang H, Carroll RC, Bassell GJ (2006) Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 32:37–48

    Article  PubMed  CAS  Google Scholar 

  • Ashmore RC, Wild JM, Schmidt MF (2005) Brainstem and forebrain contributions to the generation of learned motor behaviors for song. J Neurosci 25:8543–8554

    Article  PubMed  CAS  Google Scholar 

  • Bachner D, Steinbach P, Worhle D, Just W, Vogel M, Hameister H (1993) Enhanced FMR1 expression in testes. Nat Genet 4:155–161

    Article  Google Scholar 

  • Bailey DBJ, Skinner D, Sparkman KL (2003) Discovering fragile X syndrome: family experiences and perceptions. Pediatrics 111:407–416

    Article  PubMed  Google Scholar 

  • Barnes EF, Roberts J, Mirrett P, Sideris J, Misenheimer J (2006) A comparison of oral structure and oral-motor function in young males with fragile X syndrome and Down syndrome. J Speech Lang Hear Res 49:903–917

    Article  PubMed  Google Scholar 

  • Barnes E, Roberts J, Long SH, Martin GE, Berni MC, Mandulak KC, Sideris J (2009) Phonological accuracy and intelligibility in connected speech of boys with fragile X syndrome or Down syndrome. J Speech Lang Hear Res 52:1048–1061

    Article  PubMed  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    Article  PubMed  CAS  Google Scholar 

  • Belser RC, Sudhalter V (2001) Conversational characteristics of children with fragile X syndrome: repetitive speech. Am J Ment Retard 106:28–38

    Article  PubMed  CAS  Google Scholar 

  • Bohn MC (2005) Overview of gene therapy and viral vectors for CNS applications. Society for Neuroscience (Short Course), Washington, DC

    Google Scholar 

  • Bottjer SW (2005) Silent synapses in a thalamo-cortical circuit necessary for song learning in zebra finches. J Neurophysiol 94:3698–3707

    Article  PubMed  CAS  Google Scholar 

  • Brady N, Skinner D, Roberts J, Hennon E (2006) Communication in young children with fragile X syndrome: a qualitative study of mothers’ perspectives. Am J Speech Lang Pathol 15:353–364

    Article  PubMed  Google Scholar 

  • Brainard MS, Doupe AJ (2001) Postlearning consolidation of birdson: stabilizing effects of age and anterior forebrain lesions. J Neurosci 21:2501–2517

    PubMed  CAS  Google Scholar 

  • Brainard MS, Doupe AJ (2002) What songbirds teach us about learning. Nature 417:351–358

    Article  PubMed  CAS  Google Scholar 

  • Branchi I, Santucci D, Alleva E (2001) Ultrasonic vocalisation emitted by infant rodents: a tool for assessment of neurobehavioural development. Behav Brain Res 125:49–56

    Article  PubMed  CAS  Google Scholar 

  • Ching TY, Crowe K, Martin V, Day J, Mahler N, Youn S, Street L, Cook C, Orsini J (2010) Language development and everyday functioning of children with hearing loss assessed at 3 years of age. Int J Speech Lang Pathol 12:124–131

    Article  PubMed  Google Scholar 

  • Consortium D-BFX (1994) FMR1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  • Dalton KM, Holsen L, Abbeduto L, Davidson RJ (2008) Brain function and gaze fixation during facial-emotion processing in fragile X and autism. Autism Res 1:231–239

    Article  PubMed  Google Scholar 

  • De Boulle K, Verkerk AJMH, Reyniers E, Vits L, Hendrickx J, Van Roy B, Van den Bos F, de Graaff E, Oostra BA, Willems PJ (1993) A point mutation in the FMR-1 gene associated with fragile X mental retardation. Nat Genet 3:31–35

    Article  PubMed  Google Scholar 

  • Devys D, Lutz Y, Rouyer N, Bellocq J-P, Mandel J-L (1993) The FMR-1 protein is cytoplasmic, most abundant in neurons, and appears normal in carriers of the fragile X premutation. Nat Genet 4:335–340

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Perkel DJ, Farries MA (2003) Presynaptic depression of glutamatergic synaptic transmission by D1-like dopamine receptor activation in the avian basal ganglia. J Neurosci 23:6086–6095

    PubMed  CAS  Google Scholar 

  • Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631

    Article  PubMed  CAS  Google Scholar 

  • Eadie BD, Cushman J, Kannangara TS, Fanselow MS, Christie BR (2010) NMDA receptor hypofunction in the dentate gyrus and impaired context discrimination in adult Fmr1 knockout mice. Hippocampus. Ahead of print

    Google Scholar 

  • Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, Tada T, Dolan BM, Sharp PA, Sheng M (2010) Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron 65:373–384

    Article  PubMed  CAS  Google Scholar 

  • Farries MA, Perkel DJ (2002) A telencephalic nucleus essential for song learning contains neurons with physiological characteristics of both striatum and globus pallidus. J Neurosci 22:3776–3787

    PubMed  CAS  Google Scholar 

  • Fee MS, Kozhevnikov A, Hahnloser R (2004) Neural mechanisms of vocal sequence generation in the songbird. Ann N Y Acad Sci 1016:153–170

    Article  PubMed  Google Scholar 

  • Feng Y, Gutekunst CA, Eberhart DE, Yi H, Warren ST, Hersch SM (1997) Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes. J Neurosci 17:1539–1547

    PubMed  CAS  Google Scholar 

  • Ferrando-Lucas MT, Banús-Gómez P, López-Pérez G (2003) Aspects of cognition and language in children with fragile X syndrome. Rev Neurol 36(Suppl 1):S137–S142

    PubMed  Google Scholar 

  • Ferrier LJ, Bashir AS, Meryash DL, Johnston J, Wolff P (1991) Conversational skills of individuals with fragile-X syndrome: a comparison with autism and Down syndrome. Dev Med Child Neurol 33:776–788

    Article  PubMed  CAS  Google Scholar 

  • Fiete IR, Fee MS, Seung HS (2007) Model of birdsong learning based on gradient estimation by dynamic perturbation of neural conductances. J Neurophysiol 98:2038–2057

    Article  PubMed  Google Scholar 

  • Finestack LH, Richmond EK, Abbeduto L (2009) Language development in individuals with fragile X syndrome. Top Lang Disord 29:133–148

    Article  PubMed  Google Scholar 

  • Grace TB, Cassandra DD, Martie LS, Donald B Jr, Hatton DD, Jane ER, Penny LM (2005) Video analysis of sensory-motor features in infants with fragile X syndrome at 9–12 months of age. J Autism Dev Disord 35:645

    Article  Google Scholar 

  • Greenough WT, Klintsova AY, Irwin SA, Galvez R, Bates KE, Weiler IJ (2001) Synaptic regulation of protein synthesis and the fragile X protein. Proc Natl Acad Sci USA 98:7101–7106

    Article  PubMed  CAS  Google Scholar 

  • Haesler S, Wada K, Nshdejan A, Morrisey EE, Lints T, Jarvis ED, Scharff C (2004) FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24:3164–3175

    Article  PubMed  CAS  Google Scholar 

  • Haesler S, Rochefort C, Georgi B, Licznerski P, Osten P, Scharff C (2007) Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol 5:2885–2897

    Article  CAS  Google Scholar 

  • Hagerman RJ, Lampe ME (1999) Handbook of neurodevelopmental and genetic disorders in children. Guilford Press, New York

    Google Scholar 

  • Hagerman RJ, Staley LW, O’Conner R, Lugenbeel K, Nelson D, McLean SD, Taylor A (1996) Learning-disabled males with a fragile X CGG expansion in the upper premutation size range. Pediatrics 97:122–126

    PubMed  CAS  Google Scholar 

  • Hagerman RJ, Berry-Kravis E, Kaufmann WE, Ono MY, Tartaglia N, Lachiewicz A, Kronk R, Delahunty C, Hessl D, Visootsak J, Picker J, Gane L, Tranfaglia M (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123:378–390

    Article  PubMed  Google Scholar 

  • Hamada A, Miyawaki K, Honda-sumi E, Tomioka K, Mito T, Ohuchi H, Noji S (2009) Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev Dyn 238:2025–2033

    Article  PubMed  CAS  Google Scholar 

  • Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, Yang L, Kotin RM, Paulson HL, Davidson BL (2005) RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci USA 102:5820–5825

    Article  PubMed  CAS  Google Scholar 

  • Hergersberg M, Matsuo K, Gassman M, Schaffner W, Lüscher B, Rülicke T, Aguzzi A (1995) Tissue-specific expression of a FMR1/beta-galactosidase fusion gene in transgenic mice. Hum Mol Genet 4:359–366

    Article  PubMed  CAS  Google Scholar 

  • Hodge MM (1991) Assessing early speech motor function. Clin Commun Disord 1:69–85

    PubMed  CAS  Google Scholar 

  • Holy TE, Guo Z (2005) Ultrasonic songs of male mice. PLoS Biol 3:e386

    Article  PubMed  CAS  Google Scholar 

  • Kao MH, Doupe AJ, Brainard MS (2005) Contributions of an avian basal ganglia-forebrain circuit to real-time modulation of song. Nature 433:638–643

    Article  PubMed  CAS  Google Scholar 

  • Kau AS, Meyer WA, Kaufmann WE (2002) Early development in males with fragile X syndrome: a review of the literature. Microsc Res Tech 57:174–178

    Article  PubMed  Google Scholar 

  • Ke J-Y, Chen C-L, Chen Y-J, Chen C-H, Lee L-F, Chiang T-M (2005) Features of developmental functions and autistic profiles in children with fragile X syndrome. Chang Gung Med J 28:551–558

    PubMed  Google Scholar 

  • Konishi M, Akutagawa E (1985) Neuronal growth, atrophy and death in a sexually dimorphic song nucleus in the zebra finch. Nature 315:145–147

    Article  PubMed  CAS  Google Scholar 

  • Kover ST, Abbeduto L (2010) Expressive language in male adolescents with fragile X sydrome with and without comorbid autism. J Intellect Disabil Res 54:246–265

    Article  PubMed  CAS  Google Scholar 

  • Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP (2001) A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413:519–523

    Article  PubMed  CAS  Google Scholar 

  • Lewis P, Abbeduto L, Murphy M, Richmond E, Giles N, Bruno L, Schroeder S (2006) Cognitive, language and social-cognitive skills of individuals with fragile X syndrome with and without autism. J Intellect Disabil Res 50:532–545

    Article  PubMed  CAS  Google Scholar 

  • Lin SL, Chang SJ, Ying SY (2006) First in vivo evidence of microRNA-induced fragile X mental retardation syndrome. Mol Psychiatry 11:616–617

    Article  PubMed  CAS  Google Scholar 

  • Ling SC, Fahrner PS, Greenough WT, Gelfand VI (2004) Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proc Natl Acad Sci USA 101:17428–17433

    Article  PubMed  CAS  Google Scholar 

  • Livingston FS, Mooney R (1997) Development of intrinsic and synaptic properties in a forebrain nucleus essential to avian song learning. J Neurosci 17:8997–9009

    PubMed  CAS  Google Scholar 

  • Luo M, Perkel DJ (1999) A GABAergic, strongly inhibitory projection to a thalamic nucleus in the zebra finch song system. J Neurosci 19:6700–6711

    PubMed  CAS  Google Scholar 

  • Luo M, Perkel DJ (2002) Intrinsic and synaptic properties of neurons in an avian thalamic nucleus during song learning. J Neurophysiol 88:1903–1914

    PubMed  Google Scholar 

  • Margoliash D (1997) Functional organization of forebrain pathways for song production and perception. J Neurobiol 33:671–693

    Article  PubMed  CAS  Google Scholar 

  • Marler P, Waser MS (1977) Role of auditory feedback in canary song development. J Comp Physiol Psychol 91:8–16

    Article  PubMed  CAS  Google Scholar 

  • Medina L, Reiner A (1995) Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implicatios for the evolution of basal ganglia. Brain Behav Evol 46:235–258

    Article  PubMed  CAS  Google Scholar 

  • Mercaldo V, Descalzi G, Zhuo M (2009) Fragile X mental retardation protein in learning-related synaptic plasticity. Mol Cells 28:501–507

    Article  PubMed  CAS  Google Scholar 

  • Michel CI, Kraft R, Restifo LL (2004) Defective neuronal development in the mushroom bodies of Drosophila fragile X mental retardation 1 mutants. J Neurosci 24:5798–5809

    Article  PubMed  CAS  Google Scholar 

  • Mooney R (1992) Synaptic basis for developmental plasticity in a birdsong nucleus. J Neurosci 12:2464–2477

    PubMed  CAS  Google Scholar 

  • Mooney R, Rao M (1994) Waiting periods versus early innervation: the development of axonal connections in the zebra finch song system. J Neurosci 14:6532–6543

    PubMed  CAS  Google Scholar 

  • Newbury DF, Monaco AP (2010) Genetic advances in the study of speech and language disorders. Neuron 68:309–320

    Article  PubMed  CAS  Google Scholar 

  • Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary, Serinus canarius. J Comp Neurol 165:457–486

    Article  PubMed  CAS  Google Scholar 

  • Noveck IA, Reboul A (2008) Experimental pragmatics: a Gricean turn in the study of language. Trends Cogn Sci 12:425–431

    Article  PubMed  Google Scholar 

  • Ölveczky BP, Andalman AS, Fee MS (2005) Vocal experimentation in the juvenile songbird requires a basal ganglia circuit. PLoS Biol 3:e153

    Article  PubMed  CAS  Google Scholar 

  • Pacey LK, Doering LC (2007) Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome. Glia 55:1601–1609

    Article  PubMed  Google Scholar 

  • Pieretti M, Zhang F, Fu YH, Warren ST, Oostra BA, Caskey CT, Nelson DL (1991) Absence of expression of the FMR-1 gene in fragile X syndrome. Cell 66:817–822

    Article  PubMed  CAS  Google Scholar 

  • Price TJ, Flores CM, Cervero F, Hargreaves KM (2006) The RNA binding and transport proteins staufen and fragile X mental retardation protein are expressed by rat primary afferent neurons and localize to peripheral and central axons. Neuroscience 141:2107–2116

    Article  PubMed  CAS  Google Scholar 

  • Price J, Roberts J, Vandergrift N, Martin G (2007) Language comprehension in boys with fragile X syndrome and boys with Down syndrome. J Intellect Disabil Res 51:318–326

    Article  PubMed  CAS  Google Scholar 

  • Price JR, Roberts JE, Hennon EA, Berni MC, Anderson KL, Sideris J (2008) Syntactic complexity during conversation of boys with fragile X syndrome and Down syndrome. J Speech Lang Hear Res 51:3–15

    Article  PubMed  Google Scholar 

  • Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, Wong LF, Bilsland LG, Greensmith L, Kingsman SM, Mitrophanous KA, Mazarakis ND, Azzouz M (2005) Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med 11:429–433

    Article  PubMed  CAS  Google Scholar 

  • Raoul C, Abbas-Terki T, Bensadoun JC, Guillot S, Haase G, Szulc J, Henderson CE, Aebischer P (2005) Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nat Med 11:423–428

    Article  PubMed  CAS  Google Scholar 

  • Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Surand S, Guturkun O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis E (2004a) Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473:377–414

    Article  PubMed  Google Scholar 

  • Reiner A, Perkel DJ, Mello CV, Jarvis ED (2004b) Songbirds and the revised avian brain nomenclature. Ann N Y Acad Sci 1016:77–108

    Article  PubMed  Google Scholar 

  • Roberts J, Price J, Barnes E, Nelson L, Burchinal M, Hennon EA, Moskowitz L, Edwards A, Malkin C, Anderson K, Misenheimer J, Hooper SR (2007) Receptive vocabulary, expressive vocabulary, and speech production of boys with fragile X syndrome in comparison to boys with down syndrome. Am J Ment Retard 112:177–193

    Article  PubMed  Google Scholar 

  • Roberts TF, Tschida KA, Klein ME, Mooney R (2010) Rapid spine stabilization and synaptic enhancement at the onset of behavioral learning. Nature 463:948–952

    Article  PubMed  CAS  Google Scholar 

  • Rochefort C, He X, Scotto-Lomassese S, Scharff C (2007) Recruitment of FoxP2-expressing neurons to Area X varies during song development. Dev Neurobiol 67:809–817

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lebron E, Denovan-Wright EM, Nash K, Lewin AS, Mandel RJ (2005) Intrastriatal rAAV-mediated delivery of anti-huntingtin shRNAs induces partial reversal of disease progression in R6/1 Huntington’s disease transgenic mice. Mol Ther 12:618

    Article  PubMed  CAS  Google Scholar 

  • Sales G (1972) Ultrasound and mating behavior in rodents with some observations on other behavioural situations. J Zool Lond 168:149–164

    Google Scholar 

  • Sapru MK, Yates JW, Hogan S, Jiang L, Halter J, Bohn MC (2006) Silencing of human [alpha]-synuclein in vitro and in rat brain using lentiviral-mediated RNAi. Exp Neurol 198:382

    Article  PubMed  CAS  Google Scholar 

  • Scharff C, Haesler S (2005) An evolutionary perspective on FoxP2: strictly for the birds? Curr Opin Neurobiol 15:694

    Article  PubMed  CAS  Google Scholar 

  • Scharff C, Nottebohm F (1991) A comparative study of the behavioral deficits following lesions of various parts of the zebra finch song system: implications for vocal learning. J Neurosci 11:2896–2913

    PubMed  CAS  Google Scholar 

  • Schulz SB, Haesler S, Scharff C, Rochefort C (2010) Knockdown of FoxP2 alters spine density in Area X of the zebra finch. Genes Brain Behav 9(7):732–740

    Google Scholar 

  • Shu W, Cho JY, Jiang Y, Zhang M, Weisz D, Elder GA, Schmeidler J, De Gasperi R, Sosa MAG, Rabidou D, Santucci AC, Perl D, Morrisey E, Buxbaum JD (2005) Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci USA 102:9643–9648

    Article  PubMed  CAS  Google Scholar 

  • Singer O, Marr RA, Rockenstein E, Crews L, Coufal NG, Gage FH, Verma IM, Masliah E (2005) Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nat Neurosci 8:1343–1349

    Article  PubMed  CAS  Google Scholar 

  • Siomi MC, Siomi H, Sauer WH, Srinivasan S, Nussbaum RL, Dreyfuss G (1995) FXR1, an autosomal homolog of the fragile X mental retardation protein. EMBO J 14:2401–2408

    PubMed  CAS  Google Scholar 

  • Sossinka R, Bhoner J (1980) Song types in the zebra finch Poephila guttata castanotis. Z Tierpsychol 53:123–132

    Google Scholar 

  • Spencer CM, Serysheva E, Yuva-Paylor LA, Oostra BA, Nelson DL, Paylor R (2006) Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between fragile X-related proteins. Hum Mol Genet 15:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Spiro JE, Dalva MB, Mooney R (1999) Long-rage inhibition within the zebra finch song nucleus RA can coordinate the firing of multiple projection neurons. J Neurophysiol 81:3007–3020

    PubMed  CAS  Google Scholar 

  • Stark LL, Perkel DJ (1999) Two-stage, input-specific synaptic maturation in a nucleus essential for vocal production in the zebra finch. J Neurosci 19:9107–9116

    PubMed  CAS  Google Scholar 

  • Sudhalter V, Cohen IL, Silverman W, Wolf-Schein EG (1990) Conversational analyses of males with fragile X, Down syndrome, and autism: comparison of the emergence of deviant language. Am J Ment Retard 94:431–441

    PubMed  CAS  Google Scholar 

  • Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP (2000) A procedure for an automated measurement of song similarity. Anim Behav 59:1167–1176

    Article  PubMed  Google Scholar 

  • Tessier CR, Broadie K (2008) Drosophila fragile X mental retardation protein developmentally regulates activity-dependent axon pruning. Development 135:1547–1557

    Article  PubMed  CAS  Google Scholar 

  • Vargha-Khadem F, Watkins K, Alcock K, Fletcher P, Passingham R (1995) Praxic and nonverbal cognitive deficits in a large family with a genetically transmitted speech and language disorder. Proc Natl Acad Sci USA 92:930–933

    Article  PubMed  CAS  Google Scholar 

  • Vilkman E, Niemi J, Ikonen U (1988) Fragile X speech pathology in Finnish. Brain Lang 34:203–221

    Article  PubMed  CAS  Google Scholar 

  • Vu ET, Mazurek ME, Kuo YC (1994) Identification of a forebrain motor programming network for the learned song of zebra finches. J Neurosci 14:6924–6934

    PubMed  CAS  Google Scholar 

  • Wang J, Hessler NA (2006) Coordination of presynaptic and postsynaptic maturation in a zebra finch forebrain motor control nucleus during song learning. Eur J Neurosci 24:2859–2869

    Article  PubMed  Google Scholar 

  • Wang H, Ku L, Osterhout DJ, Li W, Ahmadian A, Liang Z, Feng Y (2004) Developmentally-programmed FMRP expression in oligodendrocytes: a potential role of FMRP in regulating translation in oligodendroglia progenitors. Hum Mol Genet 13:79–89

    Article  PubMed  CAS  Google Scholar 

  • Weiler IJ, Greenough WT (1999) Synaptic synthesis of the fragile X protein: possible involvement in synapse maturation and elimination. Am J Med Genet 83:248–252

    Article  PubMed  CAS  Google Scholar 

  • Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, Miyashiro K, Comery TA, Patel B, Eberwine J, Greenough WT (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94:5395–5400

    Article  PubMed  CAS  Google Scholar 

  • Wilbrecht L, Nottebohm F (2003) Vocal learning in birds and humans. Ment Retard Dev Disabil Res Rev 9:135–148

    Article  PubMed  Google Scholar 

  • Winograd C, Clayton D, Ceman S (2008) Expression of fragile X mental retardation protein within the vocal control system of developing and adult male zebra finches. Neuroscience 157:132–142

    Article  PubMed  CAS  Google Scholar 

  • Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, Paulson HL, Yang L, Kotin RM, Davidson BL (2004) RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 10:816

    Article  PubMed  CAS  Google Scholar 

  • Zajac DJ, Roberts JE, Hennon EA, Harris AA, Barnes EF, Misenheimer J (2006) Articulation rate and vowel space characteristics of young males with fragile X syndrome: preliminary acoustic findings. J Speech Lang Hear Res 49:1147–1155

    Article  PubMed  Google Scholar 

  • Zajac DJ, Harris AA, Roberts JE, Martin GE (2009) Direct magnitude estimation of articulation rate in boys with fragile X syndrome. J Speech Lang Hear Res 52:1370–1379

    Article  PubMed  Google Scholar 

  • Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, Speese SD, Rubin GM, Broadie K (2001) Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107:591–603

    Article  PubMed  CAS  Google Scholar 

  • Zingerevich C, Greiss-Hess L, Lemons-Chitwood K, Harris SW, Hessl D, Cook K, Hagerman RJ (2009) Motor abilities of children diagnosed with fragile X syndrome with and without autism. J Intellect Disabil Res 53:11–18

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Public Health Service grant HD41591 from NICHD, the FRAXA foundation and the Spastic Paralysis Research Foundation of the Illinois-Eastern Iowa District of Kiwanis International to S. Ceman. C.Winograd was supported by the CMB training grant and a Neuroscience Program fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Ceman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Winograd, C., Ceman, S. (2012). Exploring the Zebra Finch Taeniopygia guttata as a Novel Animal Model for the Speech–Language Deficit of Fragile X Syndrome. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_10

Download citation

Publish with us

Policies and ethics