Skip to main content

Sirtuin Modulators

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 206))

Abstract

Members of the sirtuin family including the founding protein Sir2 in Saccharomyces cerevisiae have been linked to lifespan extension in simple organisms. This finding prompted evaluation of the role of Sir2 orthologues in many aging-associated conditions including neurodegeneration, type II diabetes and cancer. These studies have demonstrated that genetic and pharmacologic manipulation of sirtuin activity have beneficial effects in a surprisingly broad spectrum of aging-associated conditions suggesting that the Sir2-family of enzymes presents an attractive target for the development of pharmacological agents. While the initial model favored pharmacological activators of sirtuins as calorie restriction mimetics, it now appears that either activation or inhibition of sirtuins may be desirable for ameliorating disease depending on the pathological condition and the target tissue. In this chapter we review the development of pharmacological small molecule activators and inhibitors of the sirtuin family of enzymes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson RM et al (2002) Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady-state NAD+ levels. J Biol Chem 277(21):18881–18890

    Article  PubMed  CAS  Google Scholar 

  • Anderson RM et al (2003) Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423(6936):181–185

    Article  PubMed  CAS  Google Scholar 

  • Asaba T et al (2009) Inhibition of human sirtuins by in situ generation of an acetylated lysine-ADP-ribose conjugate. J Am Chem Soc 131(20):6989–6996

    Article  PubMed  CAS  Google Scholar 

  • Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444(7117):337–342

    Article  PubMed  CAS  Google Scholar 

  • Bedalov A et al (2001) Identification of a small molecule inhibitor of Sir2p. Proc Natl Acad Sci USA 98:15113–15118

    Article  PubMed  CAS  Google Scholar 

  • Bedalov A et al (2003) NAD-dependent deacetylase Hst1p controls biosynthesis and cellular NAD levels in Saccharomyces cerevisiae. Mol Cell Biol 23(19):7044–7054

    Article  PubMed  CAS  Google Scholar 

  • Bogan KL, Brenner C (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu Rev Nutr 28:115–130

    Article  PubMed  CAS  Google Scholar 

  • Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6(4):298–305

    Article  PubMed  CAS  Google Scholar 

  • Borra MT, Smith BC, Denu JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280(17):17187–17195

    Article  PubMed  CAS  Google Scholar 

  • Feige JN et al (2008) Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 8(5):347–358

    Article  PubMed  CAS  Google Scholar 

  • Fulco M et al (2003) Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol Cell 12(1):51–62

    Article  PubMed  CAS  Google Scholar 

  • Grozinger CM et al (2001) Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J Biol Chem 276(42):38837–38843

    Article  PubMed  CAS  Google Scholar 

  • Guarente L (2000) Sir2 links chromatin silencing, metabolism, and aging. Genes Dev 14(9):1021–1026

    PubMed  CAS  Google Scholar 

  • Gutierrez M et al (2009) Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco-acid from the Madagascar marine cyanobacterium Lyngbya majuscula. J Org Chem 74(15):5267–5275

    Article  PubMed  CAS  Google Scholar 

  • Ha HC, Snyder SH (1999) Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 96(24):13978–13982

    Article  PubMed  CAS  Google Scholar 

  • Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7(8):1020–1035

    Article  PubMed  CAS  Google Scholar 

  • Heltweg B et al (2006) Antitumor activity of a small molecule inhibitor of human Sir2 enzymes. Cancer Res 66(8):4368–4377

    Article  PubMed  CAS  Google Scholar 

  • Hirao M et al (2003) Identification of selective inhibitors of NAD+−dependent deacetylases using phenotypic screens in yeast. J Biol Chem 278(52):52773–52782

    Article  PubMed  CAS  Google Scholar 

  • Howitz KT et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425(6954):191–196

    Article  PubMed  CAS  Google Scholar 

  • Hubbert C et al (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417(6887):455–458

    Article  PubMed  CAS  Google Scholar 

  • Huber K et al (2010) Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ −dependent histone deacetylases (sirtuins). J Med Chem 53(3):1383–1386

    Article  PubMed  CAS  Google Scholar 

  • Imai S, Guarente L (2010) Ten years of NAD-dependent SIR2 family deacetylases: implications for metabolic diseases. Trends Pharmacol Sci 31(5):212–220

    Article  PubMed  CAS  Google Scholar 

  • Kaeberlein M et al (2004) Sir2-independent life span extension by calorie restriction in yeast. PLoS Biol 2(9):E296

    Article  PubMed  Google Scholar 

  • Kaeberlein M et al (2005) Substrate-specific activation of sirtuins by resveratrol. J Biol Chem 280(17):17038–17045

    Article  PubMed  CAS  Google Scholar 

  • Kahyo T et al (2008) A novel chalcone polyphenol inhibits the deacetylase activity of SIRT1 and cell growth in HEK293T cells. J Pharmacol Sci 108(3):364–371

    Article  PubMed  CAS  Google Scholar 

  • Kim EJ et al (2007) Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cell 28(2):277–290

    Article  PubMed  CAS  Google Scholar 

  • Lagouge M et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122

    Article  PubMed  CAS  Google Scholar 

  • Lain S et al (2008) Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell 13(5):454–463

    Article  PubMed  CAS  Google Scholar 

  • Lara E et al (2009) Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28(6):781–791

    Article  PubMed  CAS  Google Scholar 

  • Lin SJ et al (2004) Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev 18(1):12–16

    Article  PubMed  CAS  Google Scholar 

  • Mai A et al (2009) Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J Med Chem 52(17):5496–5504

    Article  PubMed  CAS  Google Scholar 

  • Medda F et al (2009) Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J Med Chem 52(9):2673–2682

    Article  PubMed  CAS  Google Scholar 

  • Milne JC et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450(7170):712–716

    Article  PubMed  CAS  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183(4677):1751–1752

    Article  PubMed  CAS  Google Scholar 

  • Nakahata Y et al (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324(5927):654–657

    Article  PubMed  CAS  Google Scholar 

  • Napper AD et al (2005) Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem 48(25):8045–8054

    Article  PubMed  CAS  Google Scholar 

  • Neugebauer RC et al (2008) Structure-activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem 51(5):1203–1213

    Article  PubMed  CAS  Google Scholar 

  • North BJ et al (2003) The human Sir2 ortholog, SIRT2, is an NAD dependnet tubulin deacetylase. Mol Cell 11(2):437–444

    Article  PubMed  CAS  Google Scholar 

  • Pacholec M et al (2010) SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem 285(11):8340–8351

    Article  PubMed  CAS  Google Scholar 

  • Posakony J et al (2004) Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem 47(10):2635–2644

    Article  PubMed  CAS  Google Scholar 

  • Prozorovski T et al (2008) Sirt1 contributes critically to the redox-dependent fate of neural progenitors. Nat Cell Biol 10(4):385–394

    Article  PubMed  CAS  Google Scholar 

  • Ramsey KM et al (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324(5927):651–654

    Article  PubMed  CAS  Google Scholar 

  • Revollo JR, Grimm AA, Imai S (2004) The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279(49):50754–50763

    Article  PubMed  CAS  Google Scholar 

  • Rodgers JT et al (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434(7029):113–118

    Article  PubMed  CAS  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101(45):15998–16003

    Article  PubMed  CAS  Google Scholar 

  • Sauve AA et al (2005) Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition. Mol Cell 17(4):595–601

    Article  PubMed  CAS  Google Scholar 

  • Schmidt MT et al (2004) Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J Biol Chem 279(38):40122–40129

    Article  PubMed  CAS  Google Scholar 

  • Schuetz A et al (2007) Structural basis of inhibition of the human NAD+−dependent deacetylase SIRT5 by suramin. Structure 15(3):377–389

    Article  PubMed  CAS  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles–a cause of aging in yeast. Cell 91(7):1033–1042

    Article  PubMed  CAS  Google Scholar 

  • Tanner KG et al (2000) Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97(26):14178–14182

    Article  PubMed  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410(6825):227–230

    Article  PubMed  CAS  Google Scholar 

  • Trapp J et al (2006) Adenosine mimetics as inhibitors of NAD+−dependent histone deacetylases, from kinase to sirtuin inhibition. J Med Chem 49(25):7307–7316

    Article  PubMed  CAS  Google Scholar 

  • Trapp J et al (2007) Structure-activity studies on suramin analogues as inhibitors of NAD+−dependent histone deacetylases (sirtuins). ChemMedChem 2(10):1419–1431

    Article  PubMed  CAS  Google Scholar 

  • Vaquero A et al (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16(1):93–105

    Article  PubMed  CAS  Google Scholar 

  • Vaquero A et al (2006) SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev 20(10):1256–1261

    Article  PubMed  CAS  Google Scholar 

  • Voogd TE et al (1993) Recent research on the biological activity of suramin. Pharmacol Rev 45(2):177–203

    PubMed  CAS  Google Scholar 

  • Wood JG et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430(7000):686–689

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q et al (2007) Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci USA 104(3):829–833

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y et al (2009) Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem Biophys Res Commun 386(4):729–733

    Article  PubMed  CAS  Google Scholar 

  • Zhao W et al (2008) Negative regulation of the deacetylase SIRT1 by DBC1. Nature 451(7178):587–590

    Article  PubMed  CAS  Google Scholar 

Download references

Ackowledgments

This work was supported by the National Institute of Health grant CA129132 to AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bedalov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mahajan, S.S., Leko, V., Simon, J.A., Bedalov, A. (2011). Sirtuin Modulators. In: Yao, TP., Seto, E. (eds) Histone Deacetylases: the Biology and Clinical Implication. Handbook of Experimental Pharmacology, vol 206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21631-2_11

Download citation

Publish with us

Policies and ethics