Skip to main content

Projected Gustafson-Kessel Clustering Algorithm and Its Convergence

  • Conference paper
Transactions on Rough Sets XIV

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 6600))

Abstract

Fuzzy techniques have been used for handling vague boundaries of arbitrarily oriented clusters. However, traditional clustering algorithms tend to break down in high dimensional spaces due to inherent sparsity of data. We propose a modification in the objective function of Gustafson-Kessel clustering algorithm for projected clustering and prove the convergence of the resulting algorithm. We present the results of applying the proposed projected Gustafson-Kessel clustering algorithm to synthetic and UCI data sets, and also suggest a way of extending it to a rough set based algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abonyi, J., Feil, B.: Cluster Analysis for Data Mining and System Identification. Birkhäuser, Basel

    Google Scholar 

  2. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust Clustering in Arbitrarily Oriented Subspaces. In: SDM, pp. 763–774 (2008)

    Google Scholar 

  3. Aggarwal, C., Wolf, J., Yu, P., Procopiuc, C., Park, J.: Fast algorithms for projected clustering. In: ACM SIGMOD, pp. 61–72 (1999)

    Google Scholar 

  4. Agrawal, R., Gehrke, J., Gunopolos, D., Raghavan, P.: Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In: ACM SIGMOD (1998)

    Google Scholar 

  5. Asharaf, S., Murty, M.N.: A Rough Fuzzy Approach to Web Usage Categorization. In: Fuzzy Sets and Systems, pp. 119–129 (2004)

    Google Scholar 

  6. Assent, I., Krieger, R., Müller, E., Seidl, T.: DUSC: Dimensionality Unbiased Subspace Clustering. In: ICDM (2007)

    Google Scholar 

  7. Assent, I., Krieger, R., Müller, E., Seidl, T.: EDSC: Efficient density-based subspace clustering. In: Proceeding of the 17th ACM Conference on Information and Knowledge Management (2008)

    Google Scholar 

  8. Babuka, R., van der Veen, P.J., Kaymak, U.: Improved covariance estimation for Gustafson-Kessel clustering. In: FUZZ-IEEE 2002, vol. 2, pp. 1081–1085 (2002)

    Google Scholar 

  9. Bezdek, J.C.: Pattern recognition with Fuzzy Objective Function Algorithm. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  10. Bezdek, J.C.: An convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 2(1), 1–8 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bezdek, J.C., Hathaway, R., Sabin, M., Tucker, W.: Convergence theory for fuzzy c-means: counterexamples and repairs. In: Bezdek, J., Pal, S. (eds.) Fuzzy Models for Pattern Recognition: Methods that Search for Approximate Structures in Data, pp. 138–142. IEEE Press, New York (1992)

    Google Scholar 

  12. Bezdek, J.C., Coray, C., Gunderson, R., Watson, J.: Detection and characterization of cluster substructure. SIAM J. Appt. Math. 40(2), 339–372 (1981)

    Article  MATH  Google Scholar 

  13. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is ”nearest neighbor” meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Bazan, J.G., Nguyen, H.S., Nguyen, S.H., Synak, P., Wroblewsk, J.: Rough Set Algorithms in Classification Problem. In: Polkowski, L., Tsumoto, S., Lin, T.Y. (eds.) New Developments in Knowledge Discovery in Information Systems, pp. 49–88. Physica Verlag, Heidelberg (2000)

    Google Scholar 

  15. Dash, M., Choi, K., Scheuermann, P., Liu, H.: Feature Selection for Clustering - A Filter Solution. In: ICDM, pp. 115–122 (2002)

    Google Scholar 

  16. Dhillon, I., Kogan, J., Nicholas, M.: A Comprehensive Survey of Text Mining, pp. 73–100. Springer, Heidelberg (2003)

    Google Scholar 

  17. Dunn, J.: A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters. J. Cybernetics 3, 32–57 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gan, G., Wu, J., Yang, Z.: PARTCAT: A Subspace Clustering Algorithm for High Dimensional Categorical Data. In: IJCNN, pp. 4406–4412 (2006)

    Google Scholar 

  19. Gan, G., Wu, J.: A convergence theorem for the fuzzy subspace clustering (FSC) algorithm. Pattern Recognition 41, 1939–1947 (2008)

    Article  MATH  Google Scholar 

  20. Gan, G., Wu, J., Yang, Z.: A fuzzy subspace algorithm for clustering high dimensional data. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 271–278. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Gustafson, D.E., Kessel, W.: Fuzzy clustering with a Fuzzy Covariance Matrix. In: Proc. IEEE-CDC, vol. 2, pp. 761–766 (1979)

    Google Scholar 

  22. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006) (1st ed., 2000)

    MATH  Google Scholar 

  23. Hathaway, J.R., Bezdek, C.J.: Local convergence of the fuzzy c-Means algorithms. In: Pattern Recognition, pp. 477–480 (1986)

    Google Scholar 

  24. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis: Methods for Classification. In: Data Analysis, and Image Recognition. John Wiley & Sons, Chichester

    Google Scholar 

  25. Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  26. Jensen, R., Shen, Q.: A Rough Set – Aided system for Sorting WWW Book-marks. In: Zhong, N., et al. (eds.) Web Intelligence: Research and Development, pp. 95–105 (2001)

    Google Scholar 

  27. John, G.H., Kohavi, R., Pfleger., K.: Irrelevant Features and the Subset Selection Problem. In: ICML, pp. 121–129 (1994)

    Google Scholar 

  28. Kailing, K., Kriegel, H.-P., Kröger, P.: Density-Connected Subspace Clustering for High Dimensional Data, pp. 246–257. SIAM, Philadelphia (2004)

    Google Scholar 

  29. Kaufman, J., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, New York (1990)

    Book  MATH  Google Scholar 

  30. Kelling, K., Peter, H., Kröger, P.: A Generic Framework for Efficient Subspace Clustering of High-Dimensional Data. In: ICDM, pp. 205–257 (2005)

    Google Scholar 

  31. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)

    Google Scholar 

  32. Li, Y., Shiu, S.C.K., Pal, S.K.: Combining feature reduction and case selection in building CBR classifiers. In: Pal, S.K., Aha, D.W., Gupta, K.M. (eds.) Case- Based Reasoning in Knowledge Discovery and Data Mining. Wiley, New York (2005)

    Google Scholar 

  33. Lingras, P., West, C.: Interval set clustering of Web users with rough k-means. Technical Report No. 2002-002, Dept. of Mathematics and Computer Science, St. Mary’s University, Halifax, Canada (2002)

    Google Scholar 

  34. Lingras, P.: Applications of Rough Set Based K-Means, Kohonen, GA Clustering. T. Rough Sets, VII, pp. 120–139 (2007)

    Google Scholar 

  35. Liu, H., Setiono, R.: A probabilistic approach to feature selection – a filter solution. In: Proceedings of the 9th International Conference on Industrial and Engineering Applications of AI and ES, pp. 284–292 (1996)

    Google Scholar 

  36. Luo, Y., Xiong, S.: Clustering Ensemble for Unsupervised Feature Selection. In: FSKD, pp. 445–448 (2009)

    Google Scholar 

  37. Luss, R., d’Aspremont, A.: Clustering and Feature Selection using Sparse Principal Component Analysis. Optimization & Engineering 11(1), 145–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Małyszko, D., Stepaniuk, J.: Rough entropy based k-means clustering. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 406–413. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  39. Mitra, S., Banka, H., Pedrycz, W.: Rough-fuzzy collaborative clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 36, 795–805 (2006)

    Article  Google Scholar 

  40. Nagesh, H., Goil, S., Choudhary, A.: MAFIA: Efficient and Scalable Subspace Clustering for Very Large Data Sets, Technical Report, Northwestern Univ. (1999)

    Google Scholar 

  41. Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data. Kluwer Academic, Dordrecht (1991)

    MATH  Google Scholar 

  42. Peters, G., Lampart, M., Weber, R.: Evolutionary Rough k-Medoid Clustering. T. Rough Sets 8, 289–306 (2008)

    MATH  Google Scholar 

  43. Ruspini, E.H.: A New Approach to Clustering. Information and Control, 22–32 (1969)

    Google Scholar 

  44. Rutkowski, L.: Computational Intelligence Methods and Techniques. Springer, Heidelberg (2008)

    Book  MATH  Google Scholar 

  45. Sequeira, K., Zaki, M.: SCHISM: A new approach for interesting subspace mining. In: Proc. IEEE ICDM, Hong Kong (2004)

    Google Scholar 

  46. Shen, Q.: Rough Feature Selection for Intelligent Classifiers. T. Rough Sets 7, 244–255 (2007)

    Google Scholar 

  47. Slezak, D.: Rough Sets and Functional Dependencies in Data: Foundations of Association Reducts. T. Computational Science 5 (2009) 182-205.

    MATH  Google Scholar 

  48. Slezak, D.: Association Reducts: A Framework for Mining Multi-attribute Dependencies. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 354–363. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  49. Spath, H.: Cluster Analysis Algorithms for Data Reduction and Classification. Ellis Horwood, Chichester (1980)

    MATH  Google Scholar 

  50. Xu, R.: Survey of Clustering Algorithms. IEEE Transactions on Neural Networks 16(3) (2005)

    Google Scholar 

  51. Wiswedel, B., Berthold, M.R.: Fuzzy clustering in parallel universies. In: NAFIPS, pp. 567–572 (2005)

    Google Scholar 

  52. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. Pattern Analysis and Machine Intelligence 13, 841–847 (1991)

    Article  Google Scholar 

  53. Zadeh, L.A.: Fuzzy logic, neural networks, and soft computing. Communications of the ACM 37, 77–84 (1994)

    Article  Google Scholar 

  54. Zangwill, W.: Non-Linear programming: A unified Approach. Prentice-Hall, Englewood Cliffs (1969)

    MATH  Google Scholar 

  55. http://www.ics.uci.edu/~mlearn/MLRepository.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Puri, C., Kumar, N. (2011). Projected Gustafson-Kessel Clustering Algorithm and Its Convergence. In: Peters, J.F., et al. Transactions on Rough Sets XIV. Lecture Notes in Computer Science, vol 6600. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21563-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21563-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21562-9

  • Online ISBN: 978-3-642-21563-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics