Skip to main content

Functional Significance of Metal Ligands in Hyperaccumulating Plants: What Do We Know?

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Metal-hyperaccumulating plants can accumulate extraordinarily high quantities of certain metal ions in their leaves without suffering from toxic effects, thus allowing normal functioning of their metabolic processes. Metal tolerance is provided by efficient metal-detoxification mechanisms that operate at the organ, tissue, and cell levels. As only a very small amount of the cellular metal is expected to exist as free ions, the metal ions that do not occupy binding sites on proteins are believed to be bound to different ligands. The present chapter therefore focuses on ligands that have roles in the immobilization, transport, and/or storage of accumulated metals in plant organs, tissues, and cells. These mainly include organic acids (e.g., malic, citric, and oxalic acids) stored in the vacuole, histidine, nicotianamine, phytic acid, metallothioneins, phytochelatins, low molecular weight thiols, such as glutathione and others. The main aim of the present chapter is to emphasize the functional significance of these metal interactions with the major chelating ligands, and to reflect on their relevance for metal uptake, compartmentalization, transport, and accumulation in metal-hyperaccumulating plants, with an emphasis on the Thlaspi species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alford ÉR, Pilon-Smits EAH, Paschke MW (2010) Metallophytes – a view from the rhizosphere. Plant Soil 337:33–50

    Article  CAS  Google Scholar 

  • Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45:225–236

    Article  PubMed  Google Scholar 

  • Brooks RR (2000) Plants that hyperaccumulate heavy metals. CAB International, Wallingford

    Google Scholar 

  • Callahan DL, Baker AJ, Kolev SD, Wedd AG (2006) Metal ion ligands in hyperaccumulating plants. J Biol Inorg Chem 11:2–12

    Article  PubMed  CAS  Google Scholar 

  • Caruso JA, Klaue B, Michalke B, Rocke DM (2003) Group assessment: elemental speciation. Ecotoxicol Environ Saf 56:32–44

    Article  PubMed  CAS  Google Scholar 

  • Curie C, Cassin G, Couch D, Divol F, Higuchi K, Jean ML, Misson J, Schikora A, Czernic P, Mari S (2009) Metal movement within the plant: contribution of nicotianamine and yellow stripe 1-like transporters. Ann Bot 103:1–11

    Article  PubMed  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2006) Metal complexes increase uptake of Zn and Cu by plants: implications for uptake and deficiency studies in chelator-buffered solutions. Plant Soil 289:171–185

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications – a review. Eur J Soil Sci 60:590–612

    Article  CAS  Google Scholar 

  • Degtyarenko K (2000) Bioinorganic motifs: towards functional classification of metalloproteins. Bioinformatics 6:851–864

    Article  Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214:635–640

    Article  PubMed  CAS  Google Scholar 

  • Ebbs SD, Zambrano MC, Spiller SM, Newiville M (2008) Cadmium sorption, influx, and efflux at the mesophyll layer of leaves from ecotypes of the Zn/Cd hyperaccumulator Thlaspi caerulescens. New Phytol 181:626–636

    Article  PubMed  Google Scholar 

  • Fakuda N, Hokure A, Kitajima N, Terada Y, Saito H, Abe T, Nakai I (2008) Micro X-ray fluorescence imaging and micro X-ray absorption spectroscopy of cadmium hyper-accumulating plant, Arabidopsis halleri ssp. gemmifera, using high-energy synchrotron radiation. J Anal Atom Spectrom 23:1068–1075

    Article  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    Article  PubMed  CAS  Google Scholar 

  • Gardea-Torresday JL, Peralta-Videa JR, de la Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249:1797–1810

    Article  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Allica J, Garbisu C, Becerril JM, Barrutia O, Garcia-Plazola JI, Zhao FJ, McGrath SP (2006) Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant Cell Environ 29:1422–1429

    Article  PubMed  Google Scholar 

  • Irving H, Williams RJP (1948) Order of stability of metal complexes. Nature 162:746–747

    Article  CAS  Google Scholar 

  • Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X ray spectromicroscopy. Spectrochim Acta 61:1242–1252

    Article  Google Scholar 

  • Kachenko AG, Gräfe M, Singh B, Heald SM (2010) Arsenic speciation in tissues of the hyperaccumulator P. calomelanos var. austroamericana using X-ray absorption spectroscopy. Environ Sci Technol 44:4735–4740

    Article  PubMed  CAS  Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    Article  PubMed  CAS  Google Scholar 

  • Klugh KR, Cumming JR (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Clemens S (2005) Functions and homeostasis of zinc, copper, and nickel in plants. In: Tamás MJ, Martinoia E (eds) Molecular Biology of Metal Homeostasis and Detoxification. Springer-Verlag, Berlin

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    Article  PubMed  Google Scholar 

  • Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Tibtech 16:291–300

    Article  CAS  Google Scholar 

  • Küpper H, Zhao F-J, McGrath SP (1999) Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiol 119:305–311

    Article  Google Scholar 

  • Küpper H, Lombi E, Zhao F-J, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    Article  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao F-J, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulator Alysum lesbiacum, Alyssum berolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by X-ray absorption spectroscopy. Plant Physiol 134:748–757

    Article  PubMed  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467

    Article  CAS  Google Scholar 

  • Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marcschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57:426–445

    Article  Google Scholar 

  • Ma JF, Ueno D, Zhao F-J, McGrath SP (2005) Subcellular localization of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  PubMed  CAS  Google Scholar 

  • Mari S, Lebrun M (2005) Metal immobilization: where and how? In: Tamás MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification, vol 14. Springer- Verlag, Berlin

    Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Bryat J-F, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin MJ, Smolders E, Merckx R, Maes A (1997) Plant uptake of Cd and Zn in chelator-buffered nutrient solution depends on ligand type. In: Ando T et al (eds) Plant nutrition for sustainable food production and environment. Kluwer, Dordrecht

    Google Scholar 

  • Mira H, Martínez-Garcíja F, Peñarrubia L (2001) Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant J 25:521–528

    Article  PubMed  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    Article  PubMed  CAS  Google Scholar 

  • Parker DR, Pedler J, Ahnstrom ZAS, Resketo M (2001) Reevaluating the free-ion activity model of trace metal toxicity toward higher plants: experimental evidence with copper and zinc. Environ Toxicol Chem 20:899–906

    Article  PubMed  CAS  Google Scholar 

  • Persans MW, Yan X, Patnoe J-MML, Krämer U, Salt D (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abddel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  PubMed  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2010) Heavy metal hyperaccumulating plants: how and why they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  PubMed  Google Scholar 

  • Rosens NH, Leplae R, Bernard C, Verbruggen N (2004) Evidence for copper homeostasis function of metallothionein (MT3) in the hyperaccumulator Thlaspi caerulescens. FEBS Lett 577:9–16

    Article  Google Scholar 

  • Salt DE, Prince RC, Baker AJM, Raskin I, Pickering IJ (1999) Zinc ligand in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectroscopy. Environ Sci Technol 33:713–717

    Article  CAS  Google Scholar 

  • Smolders E, Oorts K, Van Sprang P, Schoeters I, Jansen CR, McGrath SP, McLaughlin MJ (2009) Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. Environ Toxicol Chem 28:1633–1642

    Article  PubMed  CAS  Google Scholar 

  • Tehseen M, Carins N, Sherson S, Cobbett C (2010) Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2:556–564

    Article  PubMed  CAS  Google Scholar 

  • Tolrà RP, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19:1541–1550

    Article  Google Scholar 

  • Tolrà RP, Vogel-Mikus K, Hajiboland R, Kump P, Pongrac P, Kaulich B, Gianoncelli A, Babin V, Barceló J, Regvar M, Poschenrieder C (2011) Localization of aluminium in tea (Camelia sinensis) leaves using low energy X-ray fluorescence spectro-microscopy. J Plant Res 124(1):165–172

    Article  PubMed  Google Scholar 

  • Trampczynska A, Küpper H, Meyer-Klaucke W, Schmidt H, Clemens S (2010) Nicotianamine forms complexes with Zn(II) in vivo. Metallomics 2:57–66

    Article  PubMed  CAS  Google Scholar 

  • Vogel-Mikuš K, Regvar M, Mesjasz-Pzybyłowicz W, Simčič J, Pelicon P, Budnar M (2008) Spatial distribution of Cd in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. New Phytol 179:712–721

    Article  PubMed  Google Scholar 

  • Vogel-Mikuš K, Arčon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451

    Article  Google Scholar 

  • Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460:823–830

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Zhou D-M, Li L-Z, Luo X-S (2010) Evaluating the biotic ligand model for toxicity and the alleviation of toxicity in terms of cell membrane surface potential. Environ Toxicol Chem 29:1503–1511

    Article  PubMed  CAS  Google Scholar 

  • Wenzel WW, Bunkowski M, Pushenreiter M, Horak O (2003) Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. Environ Pollut 123:131–138

    Article  PubMed  CAS  Google Scholar 

  • Wong CKE, Cobbett CS (2008) HMA P-type ATPase are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol 181:71–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjana Regvar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Regvar, M., Vogel-Mikuš, K. (2011). Functional Significance of Metal Ligands in Hyperaccumulating Plants: What Do We Know?. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_3

Download citation

Publish with us

Policies and ethics