Skip to main content

Detoxification of Heavy Metals: State of Art

  • Chapter
  • First Online:
Book cover Detoxification of Heavy Metals

Part of the book series: Soil Biology ((SOILBIOL,volume 30))

Abstract

Soil, one of the most important natural resources, is becoming degraded due to anthropogenic activities. Each source of contamination has its own damaging effects to plants, animals, and humans, but the pollution from heavy metals is of serious concern and a big potential threat to the environment and human health. This chapter gives a general overview of (1) some of the sources of heavy metal contaminants in soil like mining, agricultural activities, sewage sludge, fossil fuel combustion, metallurgical and chemical industries, electronics, etc.; (2) soil–plant relationships regarding heavy metals; (3) heavy metal tolerance mechanism(s) in plants; and (4) introduces some of approaches used nowadays to reclaim heavy metal polluted soils. These technologies must be easy to use, sustainable, and economically feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, London

    Google Scholar 

  • Alloway BJ, Jackson AP (1991) The behaviour of heavy metals in sewage sludge-amended soil. Sci Total Environ 100:151–176

    PubMed  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    PubMed  CAS  Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26(3):639–646

    Google Scholar 

  • Barber SA (1984) Soil nutrient bioavailability. A mechanistic approach. Wiley, New York, pp 188–238

    Google Scholar 

  • Belliveau BH, Staradub ME, Trevor JT (1991) Occurrence of antibiotic and metal resistance and plasmids in Bacillus strains isolated from marine sediment. Can J Microbiol 37(5):513–520

    PubMed  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Bioremediation and biodegradation: analysis of transgenic Indian mustard plant for phytoremediation of heavy metal-contaminated mine tailings. J Environ Qual 32:432–440

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Murray GE (1976) Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol 127:1502–1518

    PubMed  CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Subcellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindely) F. Muell. Plant Cell Environ 27:705–716

    CAS  Google Scholar 

  • Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117

    PubMed  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fegerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    PubMed  CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements, vol 147. Academic, London, pp 6–10

    Google Scholar 

  • Bringezu K, Lichtenberger O, Leopold I, Neumann D (1999) Heavy metal tolerance of Silene vulgaris. J Plant Physiol 154:536–546

    CAS  Google Scholar 

  • Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol 146:185–205

    CAS  Google Scholar 

  • Carrier P, Baryla A, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216:939–950

    PubMed  CAS  Google Scholar 

  • Chaudri AM, McGrath SP, Giller KE (1992) Survival of the indigenous population of Rhizobium leguminosarum biovar trifolii in soil spiked with Cd, Zn, Cu and Ni salts. Soil Biol Biochem 24:625–632

    CAS  Google Scholar 

  • Choi YE, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active excretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    PubMed  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Colpaert J, van Assche J (1992) Zinc toxicity in ectomycorrhizal Pinus sylvestris. Plant Soil 143:201–211

    CAS  Google Scholar 

  • Conder JM, Lanno RP, Basta NT (2001) Assessment of metal availability in smelter soil using earthworms and chemical extractions. J Environ Qual 30:1231–1237

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of root zone of crops phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS symposium series 664. American Chemical Society, Washington, DC, pp 2–19

    Google Scholar 

  • Davis RD, Calton-Smith C (1980) Crop as indicators of the significance of contamination of soil by heavy metals; Technical Report TR140. Water Research Centre, Stevenage, UK

    Google Scholar 

  • de Miranda JR, Thomas MA, Thurman DA, Tomsett AB (1989) Metalliothionein genes from the flowering plant Mimulus guttatus. FEBS Lett 260:277–280

    Google Scholar 

  • De Vos CHR, Schat H, De Waal MAM, Vooijs R, Ernst WHO (1991) Increased resistance to copper-induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528

    Google Scholar 

  • Demidchik V, Sokolik A, Yurin V (1997) The effect of Cu2+ on ion transport systems of the plant cell plasmalemma. Plant Physiol 114:1313–1325

    PubMed  CAS  Google Scholar 

  • Dietz K-J, Baier M, Krämer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 73–97

    Google Scholar 

  • Doelman P, Haanstra L (1979) Effect of lead on soil respiration and dehydrogenase activity. Soil Biol Biochem 11:475–479

    CAS  Google Scholar 

  • Dushenkov V, Nanda Kumar PBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    PubMed  CAS  Google Scholar 

  • Ensley BD (2000) Rationale for the use of phytoremediation. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean-up the environment. Wiley, New York, pp 3–11

    Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Fecht-Christoffers MM, Maier P, Horst WJ (2003) Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiol Plant 117:237–244

    CAS  Google Scholar 

  • Fodor E, Szabó-Nagy A, Erdei L (1995) The effects of cadmium on the fluidity and H+-ATPase activity of plasma membrane from sunflower and wheat roots. J Plant Physiol 147:87–92

    CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77(3):229–236

    PubMed  CAS  Google Scholar 

  • Garcia–Hernandez M, Murphy A, Taiz L (1998) Metallothioneins 1 and 2 have distinct but overlapping expression patterns in Arabidopsis. Plant Physiol 118:387–397

    PubMed  Google Scholar 

  • Giritch A, Ganal M, Stephan UW, Baumlein H (1998) Structure, expression and chromosomal localization of the metallothionein-like gene family of tomato. Plant Mol Biol 37:701–714

    PubMed  CAS  Google Scholar 

  • Gisbert C, Ros R, de Haro A, Walker DJ, Pilar Bernal M, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445

    PubMed  CAS  Google Scholar 

  • Goldsbrough P (2000) Metal tolerance in plants: the role of phytochelatins and metallothioneins. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL, pp 221–233

    Google Scholar 

  • Graham RD (1981) Absorption of copper by plant roots. In: Loneragan JF, Robson AD, Graham RD (eds) Copper in soils and plants. Academic, Sydney, pp 141–163

    Google Scholar 

  • Grill E, Loffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants are synthesized from glutathione by a specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    PubMed  CAS  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11:1153–1163

    PubMed  CAS  Google Scholar 

  • Haag-Kerwer A, Schäfer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835

    CAS  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    PubMed  CAS  Google Scholar 

  • Harnett NM, Gyles CL (1984) Resistance to drugs and heavy metals, colicin production, and biochemical characteristics of selected bovine and porcine Escherichia coli strains. Appl Environ Microbiol 48:930–945

    PubMed  CAS  Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    CAS  Google Scholar 

  • Hattori H (1992) Influence of heavy metals on soil microbial activities. Soil Sci Plant Nutr 38(1):93–100

    CAS  Google Scholar 

  • Hernandez LE, Cooke DT (1997) Modification of the root plasma membrane lipid composition of cadmium-treated Pisum sativum. J Exp Bot 48:1375–1381

    CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–711

    CAS  Google Scholar 

  • Hoyle B, Beveridge TS (1983) Binding of metallic ions to the outer membrane of Escherichia coli. Appl Environ Microbiol 46:749–752

    PubMed  CAS  Google Scholar 

  • Hüttermann A, Arduini I, Godbold DL (1999) Metal pollution and forest decline. In: Prasad NMV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 253–272

    Google Scholar 

  • Islam E, Yang X, Li T, Liu D, Jin X, Meng F (2007) Effect of Pb toxicity on root morphology, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. J Hazard Mater 147:806–816

    PubMed  CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Ji G, Silver S (1995) Bacterial resistance mechanism for heavy metals of environmental concern. J Ind Microbiol 14:61–75

    PubMed  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    PubMed  CAS  Google Scholar 

  • Joho M, Inouhe M, Tohoyama H, Murayama T (1995) Nickel resistance in yeast and other fungi. J Ind Microbiol 14:64–168

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Kakinuma Y, Masuda N, Igarashi K (1993) Proton potential-dependent polyamine transport system in vacuolar membrane vesicles of Saccharomyces cerevisiae. Biochim Biophys Acta 1107:126–130

    Google Scholar 

  • Karkhanis M, Jadia CD, Fulekar MH (2005) Rhizofilteration of metals from coal ash leachate. Asian J Water Environ Pollut 3(1):91–94

    Google Scholar 

  • Khan FI, Hussain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    PubMed  Google Scholar 

  • Klassen SP, McLean JE, Grossel PR, Sims RC (2000) Fate and behavior of lead in soils planted with metal-resistant species (River birch and smallwing sedge). J Environ Qual 29:1826–1834

    CAS  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krauskopf KB (1967) Introduction to geochemistry. McGraw Hill, New York

    Google Scholar 

  • Lavid N, Schwartz A, Lewinsohn E, Tel-Or E (2001a) Phenol and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaeceae). Planta 214:189–195

    PubMed  CAS  Google Scholar 

  • Lavid N, Barkay Z, Tel-Or E (2001b) Accumulation of heavy metals in epidermal glands of the waterlily (Nymphaeaeceae). Planta 212:313–322

    PubMed  CAS  Google Scholar 

  • Lavid N, Schwartz A, Yarden O, Tel-Or E (2001c) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaeceae). Planta 212:323–331

    PubMed  CAS  Google Scholar 

  • Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH (1999) Stress proteins (HSPs): methods of detection and their use as an environmental biomarker. Ecotoxicology 8:351–368

    CAS  Google Scholar 

  • Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulator versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926

    PubMed  CAS  Google Scholar 

  • Lombi E, Zhao FJ, Fuhrman M, Ma L, McGrath SP (2002) Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol 156:195–203

    CAS  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progress and perspectives. J Zhejiang Univ Sci B 9:210–220

    PubMed  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001a) A fern that hyperaccumulates arsenic. Nature 409:579

    PubMed  CAS  Google Scholar 

  • Ma JF, Ryan PR, Delhaize E (2001b) Aluminium tolerance in plants and the complexing role of organic acids. Trends Plant Sci 6:273–278

    PubMed  CAS  Google Scholar 

  • MAFF (1986) Advice on avoiding pollution from manures and other slurry wastes, Maff Booklet 2200. MAFF Publication, London

    Google Scholar 

  • Marques AM, Congregado F, Simon-Pajol DM (1979) Antibiotic and heavy metal resistance of Pseudomonas aeruginosa isolated form soils. J Appl Bacteriol 47:347–350

    PubMed  CAS  Google Scholar 

  • Marschner H (1986) Mineral nutrition in higher plants. Academic, London

    Google Scholar 

  • Marschner H (1995) Mineral nutrition in higher plants, 2nd edn. Academic, London

    Google Scholar 

  • McEntee JD, Woodrow JR, Quirk AV (1986) Investigation of cadmium resistance in Alcaligenes sp. Appl Environ Microbiol 51:515–520

    PubMed  CAS  Google Scholar 

  • McGrath SP, Chang AC, Page AL, Witter A (1994) Land application of sewage sludge: scientific perspectives of heavy metal loading limits in Europe and the United States. Environ Rev 2:108–118

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere process involved in phytoremediation of metal-contaminated soils. Plant Soil 232(1/2):207–214

    CAS  Google Scholar 

  • Meharg AA (1993) The role of the plasmalemma in metal tolerance in angiosperms. Physiol Plant 88:191–198

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1990) An altered phosphate uptake system in arsenate-tolerant Holcus lanatus. New Phytol 116:29–35

    CAS  Google Scholar 

  • Meharg AA, Macnair MR (1992) Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus. Heredity 69:336–341

    CAS  Google Scholar 

  • Mench M, Martin E (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tobaccum L., and Nicotiana rusticaL. Plant Soil 132:187–196

    CAS  Google Scholar 

  • Mergeay M (1991) Towards an understanding of the genetics of bacterial metal resistance. Trends Biotechnol 9:17–24

    PubMed  CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistance to inorganic mercury salts and organomercurials. Plasmid 27:4–16

    PubMed  CAS  Google Scholar 

  • Mitchell RL (1964) Trace elements in soil. In: Bear FE (ed) Chemistry of the soil, 2nd edn. Reinhold Publishing, New York, pp 320–368

    Google Scholar 

  • Murata K, Fukuda Y, Shimosaka M, Wantanabe K, Saikusa T, Kimura A (1985) Phenotypic character of the methylglycoxal resistance gene in Saccharomyces cerevisae: expression in Escherichia coli and application to breeding wild-type yeast strains. Appl Environ Microbiol 50:1200–1207

    PubMed  CAS  Google Scholar 

  • Murphy RJ, Levy JF (1983) Production of copper oxalate by some copper tolerant fungi. Trans Br Mycol Soc 81:165–168

    CAS  Google Scholar 

  • Nakahara H, Ishikawa T, Yasunaga S, Kondo I, Kozukue H, Silver S (1977) Linkage of mercury, cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl Environ Microbiol 33:975–976

    PubMed  CAS  Google Scholar 

  • Neilson JW, Artiola JF, Maier RM (2003) Characterization of lead removal from contaminated soils by non toxic washing agents. J Environ Qual 32:899–908

    PubMed  CAS  Google Scholar 

  • Neumann D, Nieden UZ, Lichtenberger O, Leopold I (1995) How does Armeria maritima tolerate high heavy metal concentrations? J Plant Physiol 146:704–717

    CAS  Google Scholar 

  • Ni’bhriain NN, Silver S, Foster TJ (1983) Tn5 insertion mutation in the mercuric ion resistance genes derived from plasmid R100-1. J Bacteriol 155:690–703

    PubMed  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:189–199

    Google Scholar 

  • Nishimura K, Igarashib K, Kakinuma Y (1998) Proton gradient driven nickel uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. J Bacteriol 180:1962–1964

    PubMed  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air water and soils by trace metals. Nature 333(6169):134–139

    PubMed  CAS  Google Scholar 

  • O’Halloran T (1993) Transition metals in control of gene expression. Science 261:715–725

    PubMed  Google Scholar 

  • Obbard JP, Jones KC (1993) The effect of heavy metals on dinitrogen fixation by Rhizobium – white clover in a range of long-term sewage sludge amended and metal-contaminated soils. Environ Pollut 79(2):105–112

    PubMed  CAS  Google Scholar 

  • Okoronkwo NE, Igwe JC, Onwuchekwa EC (2005) Risk and health implication of polluted soils for crop production. Afr J Biotechnol 4:1521–1524

    CAS  Google Scholar 

  • Olson BH, Thornton I (1982) The resistance patterns to metals of bacterial populations in contaminated land. J Soil Sci 33:271–277

    CAS  Google Scholar 

  • Orozco-Cardenas ML, Narvaez-Vasquez J, Ryan CA (2001) Hydrogen peroxide act as a second messenger for the induction of defence genes in tomato plants in response to wounding, systemin and methyl jasmonate. Plant Cell 13:179–191

    PubMed  CAS  Google Scholar 

  • Peciulytė D, Repečkienė J, Levinskaitė L, Lugauskas A, Motuzas A, Prosyčevas I (2006) Growth and metal accumulation ability of plants in soil polluted with Cu, Zn and Pb. Ekologija 1:48–52

    Google Scholar 

  • Persans MW, Yan X, Patnoe J-MML, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    PubMed  CAS  Google Scholar 

  • Peters WC (1978) Exploration and mining geology. Wiley, New York

    Google Scholar 

  • Peterson PJ, Alloway BJ (1979) Cadmium in soils and vegetation. In: Webb M (ed) The chemistry, biochemistry and biology of cadmium. Elsevier/North-Holland Biomedical Press, Amsterdam, NY, pp 45–92

    Google Scholar 

  • Prasad MNV (1999) Metallothioneins and metal binding complexes in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 51–72

    Google Scholar 

  • Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52:77–84

    PubMed  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Rationale for use of phytoremediation. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 53–70

    Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol 109:1141–1149

    PubMed  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants – the case for organic acids, amino acids, phytin and metallothioneins. Cell Biochem Biophys 31:19–48

    PubMed  CAS  Google Scholar 

  • Rea PA, Li Z-S, Lu Y-P, Drozdowicz YM (1998) From vacuolar GS-X pumps to multispecific ABC transporters. Annu Rev Plant Physiol Plant Mol Biol 49:727–760

    PubMed  CAS  Google Scholar 

  • Rensing C, Sun Y, Mitra B, Rosen BP (1998) Pb(II) translocating p-type ATPases. J Biol Chem 273:32614–32617

    PubMed  CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    PubMed  CAS  Google Scholar 

  • Ros ROC, Cooke DT, Burden RS, James CS (1990) Effects of the herbicide MCPA and the heavy metals, cadmium and nickel on the lipid composition, Mg2+−-ATPase activity and fluidity of plasma membranes from rice, Oryza sativa (cv. Bahia) shoots. J Exp Bot 41:457–462

    CAS  Google Scholar 

  • Rouch DA, Lee BTD, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism choice in bacterial metal resistance. J Ind Microbiol 14:132–141

    PubMed  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    PubMed  CAS  Google Scholar 

  • Salt DE, Wagner GJ (1993) Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J Biol Chem 268:12297–12302

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    PubMed  CAS  Google Scholar 

  • Salt DE, Kato N, Krämer U, Smith RD, Raskin I (2000) The role of root exudates in nickel hyperaccumulation and tolerance in accumulator and nonaccumulator species of Thlaspi. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL, pp 189–200

    Google Scholar 

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    PubMed  CAS  Google Scholar 

  • Schalscha BE, Ahumada TI (1998) Heavy metals in rivers and soils of central Chile. Water Sci Technol 37(8):251–255

    Google Scholar 

  • Schat H, Llugany M, Bernhard R (2000) Metal–specific patterns of tolerance, uptake and transport of heavy metals in hyperaccumulating and nonhyperaccumulating metallophytes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. CRC, Boca Raton, FL, pp 171–188

    Google Scholar 

  • Schnoor JL (1997) Phytoremediation. Ground-water remediation technology analysis center, Technology evaluation report, TE-98-01. University of Lowa, Department of Civil and Environmental Engineering and Center for Global and Regional Environmental Research Iowa City, Iowa

    Google Scholar 

  • Schwarz ST, Hobel H (1989) Plasmid and resistance to antimicrobial agents and heavy metals in Staphylococcus hyicus from pigs and cattle. J Vet Med 36:669–673

    CAS  Google Scholar 

  • Scott JA, Palmer SJ (1988) Cadmium bio-sorption by bacterial exopolysaccharide. Biotechnol Lett 10:21–24

    CAS  Google Scholar 

  • Scott JA, Palmer SJ (1990) Sites of cadmium uptake in bacteria used for biosorption. Appl Microbiol Biotechnol 33:221–225

    PubMed  CAS  Google Scholar 

  • Scott JA, Sage GK, Palmer SJ (1988) Metal immobilization by microbial capsular coatings. Biorecovery 1:51–58

    CAS  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 61:1135–1144

    Google Scholar 

  • Silver S (1992) Plasmid-determined metal resistance mechanisms: range and overview. Plasmid 27:1–3

    PubMed  CAS  Google Scholar 

  • Silver S (1996) Bacterial resistance to toxic metal ions. A review. Gene 179:9–19

    PubMed  CAS  Google Scholar 

  • Silver S, Ji G (1994) Newer systems for bacterial resistance’s to toxic heavy metals. Environ Health Perspect 102:107–113

    PubMed  CAS  Google Scholar 

  • Silver S, Misra TK (1984) Bacterial transformation of and resistances to heavy metals. Basic Life Sci 28:23–46

    PubMed  CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    PubMed  CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation and chromosome determined inorganic ion transport in bacteria. Microbiol Rev 56:195–228

    PubMed  CAS  Google Scholar 

  • Silver S, Nucifors G, Chu L, Misra TK (1989) Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem Sci 14:76–80

    PubMed  CAS  Google Scholar 

  • Strange J, Macnair MR (1991) Evidence for a role for the cell membrane in copper tolerance of Mimulus guttatus Fischer ex DC. New Phytol 119:383–388

    CAS  Google Scholar 

  • Stuczynski TI, Siebielec G, Daniels WL, McCarty GC, Chaney RL (2007) Biological aspects of metal waste reclamation with sewage sludge. J Environ Qual 36:1154–1162

    PubMed  CAS  Google Scholar 

  • Tam PCF (1995) Heavy metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187

    CAS  Google Scholar 

  • Terry N, Carlson C, Raab TK, Zayed A (1992) Rates of Se volatilization among crop species. J Environ Qual 21:341–344

    CAS  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA 97:4991–4996

    PubMed  CAS  Google Scholar 

  • Tomsett AB, Thurman DA (1988) Molecular biology of metal tolerances of plants. Plant Cell Environ 11:383–394

    CAS  Google Scholar 

  • Tseng TS, Tzeng SS, Yeh CH, Chang FC, Chen YM, Lin CY (1993) The heat-shock response in rice seedlings-isolation and expression of cDNAs that encode class-I low-molecular-weight heat-shock proteins. Plant Cell Physiol 34:165–168

    CAS  Google Scholar 

  • Tsutomu S, Kobayashi Y (1998) The ars operon in the skin element of Bacillus subtilis confers resistance to arsenate and arsenite. J Bacteriol 180:1655–1661

    Google Scholar 

  • Tyler G, Balsberg Pahlsson A-M, Bengtsson G, Baath E, Tranvik L (1989) Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates. Water Air Soil Pollut 47:189–215

    CAS  Google Scholar 

  • United States Protection Agency (USPA) (2000) Introduction to phytoremediation. EPA 600/R- 99/107. US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • van Vliet C, Anderson CR, Cobbett CS (1995) Copper-sensitive mutant of Arabidopsis thaliana. Plant Physiol 109:871–878

    PubMed  Google Scholar 

  • Vandenhove H, van Hees M, van Winkel S (2001) Feasibility of phytoextraction to clean up low-level uranium-contaminated soil. Int J Phytoremediation 3:301–320

    CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    PubMed  CAS  Google Scholar 

  • Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alerts the activities of antioxidant enzymes in growing rice plants. Plant Sci 164:645–655

    CAS  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Vranova E, Inze D, Van Breusegem F (2002) Signal transduction during oxidative stress. J Exp Bot 53:1227–1236

    PubMed  CAS  Google Scholar 

  • Wainwright SJ, Woolhouse HW (1977) Some physiological aspects of copper and zinc tolerance in Agrostis tenuis Sibth.: cell elongation and membrane damage. J Exp Bot 28:1029–1036

    CAS  Google Scholar 

  • Wang YT, Shen H (1995) Bacterial reduction of hexavalent chromium. J Ind Microbiol 14:159–163

    PubMed  CAS  Google Scholar 

  • Webber MD, Kloke A, Tjell JC (1984) A review of current sludge use guidelines for the control of heavy metal contamination in soil. In: L’Hermite P, Ott H (eds) Processing and use of sewage sludge. Reidel Publishing Company, Dordrecht, pp 371–386

    Google Scholar 

  • Weiss A, Murphy S, Silver S (1977) Mercury and organomercurial resistance determined by plasmids in Staphylococcus aureus. J Bacteriol 132:197–208

    PubMed  CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy-metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 77803:1–23

    Google Scholar 

  • Wollgiehn R, Neumann D (1999) Metal stress response and tolerance of cultured cells from Silene vulgaris and Lycopersicon peruvianum: role of heat stress proteins. J Plant Physiol 154:547–553

    CAS  Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants – a review. Gene 179:21–30

    PubMed  CAS  Google Scholar 

  • Zhou J, Goldsbrough PB (1994) Functional homologs of fungal metallothionein genes from Arabidopsis. Plant Cell 6:875–884

    PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit Varma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agrawal, J., Sherameti, I., Varma, A. (2011). Detoxification of Heavy Metals: State of Art. In: Sherameti, I., Varma, A. (eds) Detoxification of Heavy Metals. Soil Biology, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21408-0_1

Download citation

Publish with us

Policies and ethics