Skip to main content

Molecular Basis of Bacterial Calcium Carbonate Precipitation

  • Chapter
  • First Online:
Molecular Biomineralization

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 52))

Abstract

Calcium carbonate precipitation is a widespread process, occurring in different bacterial taxonomic groups and in different environments, at a scale ranging from the microscopic one of cells to that of geological formations. It has relevant implications in natural processes and has great potentiality in numerous applications. For these reasons, bacterial precipitation has been investigated extensively both in natural environments and under laboratory conditions. Different mechanisms of bacterial involvement in precipitation have been proposed. There is an agreement that the phenomenon can be influenced by the environmental physicochemical conditions and it is correlated both to the metabolic activity and the cell surface structures of microorganisms. Nevertheless, the role played by bacteria in calcium mineralization remains a matter of debate. This chapter reviews the main mechanisms of the process with particular focus on what is known on molecular aspects, and discusses the significance of the precipitation event also from an evolutionary point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Mukherjee A, Basu PC, Sudhakara Reddy M (2009) Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. J Ind Microbiol Biotechnol 36:981–988

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Appanna VD, Huang J, Viswanatha T (1992) A novel role for calcite in calcium homeostasis. FEBS Lett 308:94–96

    Article  PubMed  CAS  Google Scholar 

  • Arp G, Reimer A, Reitner J (2001) Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans. Science 292:1701–1704

    Article  PubMed  CAS  Google Scholar 

  • Atlas RC, Rude PD (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediment. Geochim Cosmochim Acta 52:751–766

    Article  Google Scholar 

  • Barabesi C, Galizzi A, Mastromei G, Rossi M, Tamburini E, Perito B (2007) Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. J Bacteriol 189:228–235

    Article  PubMed  CAS  Google Scholar 

  • Barabesi C, Salvianti F, Mastromei G, Perito B (2003) Microbial calcium carbonate precipitation for reinforcement of monumental stones. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. AA Balkema Publishers, Lisse, The Netherlands, pp 209–212

    Google Scholar 

  • Barton HA, Spear JR, Pace NR (2001) Microbial life in the underworld: biogenicity in secondary mineral formations. Geomicrobiol J 18:359–368

    Article  CAS  Google Scholar 

  • Bäuerlein E (2003) Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. Angewandte Chemie International Edition 42:614–641

    Article  Google Scholar 

  • Bäuerlein E (2004) Biomineralization. Progress in biology, molecular biology and application. WILEY-VHC Verlag GmbH & Co KgaA, Weinheim

    Google Scholar 

  • Ben Omar N, Arias JM, Gonzalez-Munoz MT (1997) Extracellular bacterial mineralization within the context of geomicrobiology. Microbiologia 13:161–172

    PubMed  CAS  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  PubMed  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    PubMed  CAS  Google Scholar 

  • Bontognali TRR, Vasconcelos C, Warthmann RJ, Dupraz C, Bernasconi SM, McKenzie JA (2008) Microbes produce nanobacteria-like structures, avoiding cell entombment. Geology 36:663–666

    Article  CAS  Google Scholar 

  • Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529

    Article  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    Article  CAS  Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476

    Article  CAS  Google Scholar 

  • Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675

    Article  PubMed  CAS  Google Scholar 

  • Castanier S, Métayer-Levrel L, Perthuisot J-P (1999) Ca-carbonates precipitation and limestone genesis-the microbiologist point of view. Sedimentary Geology 126:9–23

    Article  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecological Engineering 36:118–136

    Article  Google Scholar 

  • Decho AW (2010) Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecological Engineering 36:137–144

    Article  Google Scholar 

  • Dominguez DC (2004) Calcium signalling in bacteria. Mol Microbiol 54:291–297

    Article  PubMed  CAS  Google Scholar 

  • Douglas S, Beveridge TJ (1998) Mineral formation by bacteria in natural microbial communities. FEMS Microbiol Ecol 26:79–88

    Article  CAS  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Process of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    Article  CAS  Google Scholar 

  • Ehrlich HL (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Ehrlich HL (1998) Geomicrobiology: its significance for geology. Earth Sci Rev 45:45–60

    Article  CAS  Google Scholar 

  • Ercole C, Cacchio P, Botta AL, Centi V, Lepidi A (2007) Bacterially induced mineralization of calcium carbonate: the role of exopolysaccharides and capsular polysaccharydes. Microsc Microanal 13:42–50

    Article  PubMed  CAS  Google Scholar 

  • Fein JB, Daughney CJ, Yee N, Davis TA (1997) A chemical equilibrium model for metal adsorption onto bacterial surfaces. Geochim Cosmochim Acta 61:3319–3328

    Article  CAS  Google Scholar 

  • Folk RL (1993) SEM imaging of bacteria and nanobacteria in carbonate sediments and rocks. J Sedim Petrol 63:990–999

    Google Scholar 

  • Fortin D, Ferris FG, Beveridge TJ (1997) Surface-mediated mineral development by bacteria. Rev Mineral 35:161–180

    CAS  Google Scholar 

  • Friis AK, Davis TA, Figueira MM, Paquette J, Mucci A (2003) Influence of bacillus subtilis cell walls and EDTA on calcite dissolution rates and crystal surface features. Environ Sci Technol 37:2376–2382

    Article  PubMed  CAS  Google Scholar 

  • Hammes F, Verstraete W (2002) Key role of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    Article  CAS  Google Scholar 

  • Head IM, Gray ND, Clarke KJ, Pickup RW, Jones JG (1996) The phylogenetic position and ultrastructure of the uncultured bacterium Achromatium okaliferum. Microbiology 142:2341–2354

    Article  PubMed  CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Saxena A, Bongkeun S, Ward BB, Beveridge TJ, Myneni CB (2004) Elucidation of functional groups on Gram-positive and Gram-negative bacterial surfaces using infrared spectroscopy. Langmuir 20:11433–11442

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi T, Decho AW (2002) A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism. J Crystal Growth 240:230–235

    Article  CAS  Google Scholar 

  • Little BJ, Wagner PA, Lewandowski Z (1997) Spatial relationship between bacteria and mineral surfaces. Rev Mineral 35:123–159

    CAS  Google Scholar 

  • Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, Oxford

    Google Scholar 

  • Mann S (2001) Biomineralization. Oxford University Press, New York

    Google Scholar 

  • Marvasi M, Visscher PT, Perito B, Mastromei G, Casillas-Martinez L (2010) Physiological requirements for carbonate precipitation during biofilm development of Bacillus subtilis etfA mutant. FEMS Microbiol Ecol 71:341–350

    Article  PubMed  CAS  Google Scholar 

  • McConnaughey TA, Whelan JF (1997) Calcification generates protons for nutrient and bicarbonate uptake. Earth Sci Rev 42:95–117

    Article  CAS  Google Scholar 

  • Murray J, Irvine R (1889–1890) On coral reefs and other carbonate of lime formations in modern seas. Proc Roy Soc Lond A 17:79–109

    Google Scholar 

  • Naseem R, Wann KT, Holland IB, Campbell AK (2009) ATP regulates calcium efflux and growth in E. coli. J Mol Biol 391:42–56

    Article  PubMed  CAS  Google Scholar 

  • Norris V, Grant S, Freestone P, Canvin J, Sheikh FN, Toth I, Trinei M, Modha K, Norman RI (1996) Calcium signalling in bacteria. J Bacteriol 178:3677–3682

    PubMed  CAS  Google Scholar 

  • Pentecost A, Bauld J (1988) Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomicrobiol J 6:129–135

    Article  CAS  Google Scholar 

  • Perito B, Biagiotti L, Daly S, Galizzi A, Tiano P, Mastromei G (2000) Bacterial genes involved in calcite crystal precipitation. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: The role of microbial communities in the degradation and protection of cultural heritage. Plenum Publisher, New York, pp 219–230

    Google Scholar 

  • Phoenix VR, Konhauser KO (2008) Benefits of bacterial biomineralization. Geobiology 6:303–308

    Article  PubMed  CAS  Google Scholar 

  • Rivadeneyra MA, Delgado R, del Moral A, Ferrer MR, Ramos-Cormenzana A (1994) Precipitation of calcium carbonate by Vibrio spp. from an inland saltern. FEMS Microbiol Ecol 13:197–204

    Article  CAS  Google Scholar 

  • Rivadeneyra MA, Delgado G, Ramos-Cormenzana A, Delgado R (1998) Biomineralization of carbonates by Halomonas eurihalina in solid and liquid media with different salinities: crystal formation sequence. Res Microbiol 149:277–287

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Muňoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    Article  PubMed  CAS  Google Scholar 

  • Schultze-Lam S, Harauz G, Beveridge TJ (1992) Partecipation of a cyanobacterial S layer in fine-grain mineral formation. J Bacteriol 174:7971–7981

    PubMed  CAS  Google Scholar 

  • Silver S (1997) The bacterial view of the periodic table: specific functions for all elements. Rev Mineral 35:345–360

    CAS  Google Scholar 

  • Simkiss K (1977) Biomineralization and detoxification. Calcif Tiss Res 24:199–200

    Article  CAS  Google Scholar 

  • Smith RJ (1995) Calcium and bacteria. Adv Microb Physiol 37:83–133

    Article  PubMed  CAS  Google Scholar 

  • Tourney J, Ngwenya BT (2009) Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chem Geol 262:138–146

    Article  CAS  Google Scholar 

  • Vasconcelos C, McKenzie JA, Bernasconi S, Grujic D, Tien AJ (1995) Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature 377:220–222

    Article  CAS  Google Scholar 

  • von Knorre H, Krumbein WE (2000) Bacterial calcification. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin Heidelberg, pp 25–31

    Google Scholar 

  • Weiner S, Dove PM (2003) An overview of biomineralization and the problem of the vital effect. Am Rev Mineral Geochem 54:1–31

    Article  CAS  Google Scholar 

  • Wright DT (1999) The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in distal ephemeral lakes of the Coorong region, South Australia. Sediment Geol 126(1–4):147–157

    Article  CAS  Google Scholar 

  • Yates KK, Robbins LL (1999) Radioisotope tracer studies of inorganic carbon and Ca in microbiologically derived CaCO3. Geochim Cosmochim Acta 63(1):129–136

    Article  CAS  Google Scholar 

  • Zamarreño DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75:5981–5990

    Article  PubMed  Google Scholar 

  • Zavarzin GA (2002) Microbial geochemical calcium cycle. Microbiology: a translation of Mikrobiologiya 71:1–17

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Mastromei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Perito, B., Mastromei, G. (2011). Molecular Basis of Bacterial Calcium Carbonate Precipitation. In: Müller, W. (eds) Molecular Biomineralization. Progress in Molecular and Subcellular Biology(), vol 52. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21230-7_5

Download citation

Publish with us

Policies and ethics