Skip to main content

Abstract

The genus Miscanthus was first described in 1855 by Andersson (Öfvers Kungl Vet Adad Förh Stockholm 12:151–168, 1856). Its members are typical tall C4 grasses belonging to the Poaceae family, showing close relationships with the species in the Andropogoneae tribe. The genus is naturally distributed in eastern and southeastern Asia. Certain species have been introduced into Europe and northern America where they have received widespread attention for their ornamental value. Traditionally the genus has attractive features for domestic use as a livestock feed, green manure, and as roof material for traditional homes (Koyama, Grasses of Japan and Its Neighboring Regions: An Identification Manual. Kodansha, Tokyo, Japan, 1987) and more recently as a genetic source for sugarcane breeding. Although it has had a long tradition of use, its recent evaluation as a biomass feedstock for bioenergy production has given the genus industrial attention. The use of Miscanthus, a non-food crop, as an energy crop avoids food security risks associated with many other potential energy crops. Most research and commercial production have used a triploid sterile hybrid, Miscanthus × giganteus, which is thought to be a spontaneous hybrid between M. sinensis and M. sacchariflorus. The use of M. × giganteus may avoid the significant problem of invasive weediness associated with other Micsanthus species. Miscanthus taxonomy has largely been examined in order to broaden the genetic resources available, but it is complex and confusing so that it is often subjected to modifications and discussed inconclusively. Between 14 and 20 species of Miscanthus have been recognized, among which Miscanthus sinensis, Miscanthus sacchariflorus, and their hybrid Miscanthus × giganteus are distinguished. The present chapter reviews the role of Miscanthus on the environment and its wealth that is genetically poorly characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adati S (1958) Studies on the Miscanthus genus with special reference to the Japanese suitable for breeding purposes as fodders crops. Bulletin of the faculty of Agriculture, Mie University 12:1–112 [in Japanese with English summary].

    Google Scholar 

  • Adati S, Shiotani L (1962) The cytotaxonomy of the genus Miscanthus and its phylogenic status. Bull Fac Agric Mie Univ 25:1–24

    Google Scholar 

  • Andersson NJ (1856) Om de med Saccharum beslägtade genera. Öfvers Kungl Vet Adad Förh Stockholm 12:151–168

    Google Scholar 

  • Chen SL, Renvoize SA (2006) Miscanthus. Flora China 22:581–583

    Google Scholar 

  • Chou CH (1989) Population variation and evolutionary trend of Miscanthus taxa in Taiwan. In: Chou CH, Waller CH, Reinhardt GHC (eds) Biodiversity and allelopathy: from organisms to ecosystems in the Pacific. Academia Sinica, Taipei, Taiwan, pp 37–46

    Google Scholar 

  • Chou CH (2009) Miscanthus used as and alternative biofuel material: the basic studies on ecology and molecular evolution. Renewab Energy 34:1908–1912

    Article  CAS  Google Scholar 

  • Chou CH, Lee YF (1991) Allelopathic dominance of Miscanthus transmorrisonensis in an alpine grassland community in Taiwan. J Chem Ecol 17:2267–2281

    Article  Google Scholar 

  • Chou CH, Wang SY, Chang FC (1987) Population study of Miscanthus floridulus (Labill) Warb. I. Variation of peroxidase and esterase in 27 populations in Taiwan. Bot Bull Acad Sin 28:247–281

    Google Scholar 

  • Chou CH, Chiang YC, Chiang TY (1999) Interspecific and within-individual length heterogeneity of the rDNA-IGS in Miscanthus sinensis var. glaber (Poaceae): sequence comparison and phylogenetic analysis indicate natural hybridization. Genome 42:1088–93.

    Google Scholar 

  • Chou CH, Chiang TY, Chiang YC (2001) Towards an integrative biology research: a vase study on adaptive and evolutionary trend of Miscanthus population in Taiwan. Weed Biol Manag 1:81–88

    Article  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera graminum, grasses of the world. Kew Bull Add Ser 13:1–389

    Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294

    Article  Google Scholar 

  • Clifton-Brown JC, Neilson BM, Lewandowski I, Jones MB (2000) The modeled productivity of Miscanthus × giganteus (GREEF et DU) in Ireland. Ind Crop Prod 12:97–109

    Article  Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518

    Article  Google Scholar 

  • Clifton-Brown JC, Breuer J, Jones MB (2007) Carbon mitigation by the energy crop, Miscanthus. Glob Change Biol 13:2296–2307

    Article  Google Scholar 

  • Clifton-Brown JC, Chiang WC, Hodkinson TR (2008) Miscanthus genetic resources and breeding potential to enhance bioenergy production. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science, New York, USA, pp 273–294

    Google Scholar 

  • Daniels J, Roach BT (1987) Taxonomy and evolution. In: Heinz DJ (ed) Sugarcane improvement through breeding. Elsevier, New York, USA, pp 7–84

    Google Scholar 

  • Darke R (1999) The color encyclopedia of ornamental grasses, sedges, restios, rushes, cat-tails, and selected bamboos. Timber, Portland, OR, USA

    Google Scholar 

  • Głowacka K, Jeżowski S, Kaczmarek Z (2009) Polyploidization of Miscanthus sinensis and Miscanthus × giganteus by plant colchicine treatment. Ind Crop Prod 30:444–446

    Article  Google Scholar 

  • Greef JM, Deuter M (1993) Syntaxonomy of Miscanthus ×giganteus Greef et Deu. Angew Bot 67:87–90

    Google Scholar 

  • Greef JM, Deuter M, Jung C, Schondelmaier J (1997) Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol 44:185–195

    Article  Google Scholar 

  • Hansen EM, Christensen BT, Jensen LS, Kristensen K (2004) Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance. Biomass Bioenergy 26:97–105

    Article  CAS  Google Scholar 

  • Hayashi I (1979) The autoecology of some grassland species. In: Numata M (ed) Ecology of grasslands and bamboolands in the world. W. Junk, Hague, Netherlands, pp 141–152

    Chapter  Google Scholar 

  • Hayashi I, Numata M (1971) Viable buried-seed populations in the Miscanthus and Zoysia type grasslands in Japan – Ecological studies on the buried-seed population in the soil as related to plant succession, VI. Jpn J Ecol 20:243–252

    Google Scholar 

  • Heaton AH, Clifton-Brown JC, Voight TV, Jones MB, Long PS (2004) Miscanthus for renewable energy generation: European Union experience projection for Illinois. Mitigat Adapt Strateg Glob Change 9:433–451

    Article  Google Scholar 

  • Heaton EA, Dohlmeman FG, Long SP (2008) Meeting US biofuels goals with less land: the potential of Miscanthus. Global Change Biology 14:2000–2014

    Article  Google Scholar 

  • Hernandez P, Dorado G, Laurie DA, Martin A (2001) Microsatellites and RFLP probes from maize are efficient sources of molecular markers for the biomass energy crop Miscanthus. Theor Appl Genet 102:616–622

    Article  CAS  Google Scholar 

  • Hirayoshi I, Nishikawa K, Kato R (1955) Cytogenetic studies on forage plants. (IV) Self-incompatibility in Miscanthus. Jpn J Breed 5:167–170 (in Japanese)

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Kubono M, Murase T (1957) Cyto-genetical studies on forage plants (VI) On the chromosome number of Ogi (Miscanthus sacchariflorus). Res Bull Fac Agric Gifu Univ 8:8–13 (in Japanese)

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Kubono M, Sakaida T (1959) Cyto-genetical studies on forage plants (VII) Chromosome conjugation and fertility of Miscanthus hybrids including M. sinensis M. sinensis var. condensatus and M. tinctorius. Res Bull Fac Agric Gifu Univ 11:86–91 (in Japanese)

    Google Scholar 

  • Hirayoshi I, Nishikawa K, Hakura A (1960) Cyto-genetical studies on forage plants (VIII) 3x- and 4x- hybrid arisen from the cross Miscanthus sinensis var. condensatus × Miscanthus sacchariflorus. Res Bull Fac Agric Gifu Univ 12:82–88 (in Japanese)

    Google Scholar 

  • Hodkinson TR, Renvoize SA (2001) Nomenclature of Miscanthus × giganteus. Kew Bull 56:757–758

    Article  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002a) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002b) Characteristization of a genertic resource collection for Miscanthus (saccharineae, andropogoneae, poacea) using AFLP and ISSSR PCR. Am Bot 89:627–636

    Article  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002c) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharineae, Andropogoneae, Poacea) based on DNA sequencing from ITS nuclear ribosomal DNA and plasticd trnL intron and tmL-F intergenic spacers. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Honda M (1930) Monographia Poacearum Japonicarum, Bambusoideis exclusis. J Fac Sci Imperial Univ Tokyo Sect 3 Bot 3:1–484

    Google Scholar 

  • Hsu FH, Chou CH (1992) Inhibitory effects of heavy metals on seed germination and seedling growth of Miscanthus species. Bot Bull Acad Sin 33:335–342

    CAS  Google Scholar 

  • Ibaragi Y (2003) The taxonomy of Diantrantus (poaceea). Acta Phytotaxonom Geobot 54:109–125

    Google Scholar 

  • Ibaragi Y, Ohashi H (2004) A taxonomy study of Miscanthus section Kariyasua (Grammineae). J Jpn Bot 79:4–22

    Google Scholar 

  • Iwata H, Kamijo T, Tsumura Y (2005) Genetic structure of Miscanthus sinensis spp. condensatus (Poaceae) on Miyake Island: implications for revegetation of volcanic devasted sites. Ecol Res 20:233–238

    Article  Google Scholar 

  • Jones MB, Walsh M (2001) Miscanthus for energy and fiber. James & James, London, UK

    Google Scholar 

  • Jorgensen U (1997) Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass Bioenergy 12:55–169

    Google Scholar 

  • Jorrgensen U, Muhs HJ (2001) Miscanthus breeding and improvement. In Miscanthus–For energy and Fiber, pp.68–85. Eds M.B. Jones and M. Wash. London, U.K: James and James (Science Publishers)

    Google Scholar 

  • Koyama T (1987) Grasses of Japan and its neighboring regions: an identification manual. Kodansha, Tokyo, Japan

    Google Scholar 

  • Lafferty J, Lelley T (1994) Cytogenetic studies of different Miscanthus with potential for agriculture use. Plant Breed 113:246–249

    Article  Google Scholar 

  • Lee YN (1964a) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 1. J Jpn Bot 39:196–205

    Google Scholar 

  • Lee YN (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 2, enumeration of species and varieties. J Jpn Bot 39:257–265

    Google Scholar 

  • Lee YN (1964c) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 3, enumeration of species and varieties. J Jpn Bot 39:289–298

    Google Scholar 

  • Lee SC (1995) Taxonomy of Miscanthus (Poaceae) in Taiwan. Doctoral Dissertation, Department of Biology, Taiwan University, Taipei, Taiwan (in Chinese)

    Google Scholar 

  • Lewandowski I, Schmidt U (2006) Nitrogen, energy and land use efficiencies of Miscanthus, Reed canary grass and triticale as determined by the boundary line approach. Agric Ecosyst Environ 112:335–346

    Article  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Andersn B, Basch G, Crhistian DG, Jørgensen U, Mb J, Rich AB, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schwarz U, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of Miscanthus genotypes. Agron J 95:1274–1280

    Article  Google Scholar 

  • Linde-Laursen IB (1993) Cytogenetic analysis of Miscanthus ‘Giganteus’, an interspecific hybrid. Hereditas 119:297–300

    Article  Google Scholar 

  • Mantineo M, D’Agosta GM, Copani V, Patane C, Consentino SL (2009) Biomass yield energy balance of three perennial crops for energy use in the semi-arid Mediterranean environment. Field Crop Res 114:204–213

    Article  Google Scholar 

  • Nakagoshi N (1984) Buried viable seed populations in forest communities on the Hiba Mountains, Southwestern Japan. J Sci Hiroshima Univ Ser B Div 2(19):1–56

    Google Scholar 

  • Nielsen PN (1990) Elefantengrassanbau in Dänemark-Praktikerbericht. Pflug Spaten 3:1–4

    CAS  Google Scholar 

  • Powlson DS, Rich AB, Shield I (2005) Biofuels and other approaches for decreasing fossil fuel emissions from agriculture. Ann Appl Biol 146:193–201

    Article  CAS  Google Scholar 

  • Rayburn AL, Crawford J, Rayburn CM, Juvik JA (2009) Genome size of three Miscanthus species. Plant Mol Biol Rep 27:184–188

    Article  CAS  Google Scholar 

  • Renvoize SA (2003) The genus Miscanthus. Plantman 2:207–211

    Google Scholar 

  • Scally L, Hodkinson T, Jones MB (2001) Origins and taxonomy of Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fiber. James & James, London, UK, pp 1–9

    Google Scholar 

  • Schwarz KU, Murphy DPL, Schnug E (1994) Studies of the growth and yield of Miscanthus × giganteus in Germany. Asp Appl Biol 40:533–540

    Google Scholar 

  • Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P (2006) Energy crops: current status and future prospects. Glob Change Biol 12:2054–2076

    Article  Google Scholar 

  • Stamyf P, Clifton-Brown JC, Jones MB (2007) European wide GIS-based modeling system for quantifying the feedstock from Miscanthus and the potential contribution to renewable energy targets. Glob Change Biol 13:2283–2295

    Article  Google Scholar 

  • Stewart RJ, Toma Y, Fernandez FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development in its native range in Japan: a review. Glob Change Biol Bioenerg 1:126–153

    Article  Google Scholar 

  • Watson L, Dallwitz MJ (1992) Grass genera of the world: descriptions, illustrations, identification, and information retrieval; including synonyms, morphology, anatomy, physiology, phytochemistry, cytology, classification, pathogens, world and local distribution, and references. http://biodiversity.uno.edu/delta/version. Accessed 18 Aug 1999

  • Weng JH, Ueng RG (1997) Effect of temperature on photosynthesis of Miscanthus clones collected from different elevation. Photosynthetica 34:307–311

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Henry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anzoua, K.G., Yamada, T., Henry, R.J. (2011). Miscanthus. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21102-7_9

Download citation

Publish with us

Policies and ethics