Skip to main content

An Ultrasound-Driven Kinematic Model of the Heart That Enforces Local Incompressibility

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

Local incompressibility can be used to improve fitting and analysis of ultrasound-based displacement data using a heart model. An analytic mathematical model incorporating inflation, torsion, and axial extension was generalized for the left ventricle. Short-axis and long-axis images of mouse left ventricles were acquired using high frequency B-mode ultrasound and myocardial displacements were determined using speckle tracking. Deformation gradient components in the circumferential and longitudinal directions were fitted using linear regressions. The slopes of these lines were then used to predict motion in the radial directions. The optimized kinematic model accurately predicted the motion of mouse left ventricle during filling with normalized root mean square error of 4.4±1.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roger, V.L., Go, A.S., Lloyd-Jones, D.M., Adams, R.J., Berry, J.D., Brown, T.M., Carnethon, M.R., Dai, S., de Simone, G., Ford, E.S., Fox, C.S., Fullerton, H.J., Gillespie, C., Greenlund, K.J., Hailpern, S.M., Heit, J.A., Ho, P.M., Howard, V.J., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, J.H., Lisabeth, L.D., Makuc, D.M., Marcus, G.M., Marelli, A., Matchar, D.B., McDermott, M.M., Meigs, J.B., Moy, C.S., Mozaffarian, D., Mussolino, M.E., Nichol, G., Paynter, N.P., Rosamond, W.D., Sorlie, P.D., Stafford, R.S., Turan, T.N., Turner, M.B., Wong, N.D., Wylie-Rosett, J.: Heart Disease and Stroke Statistics 2011 Update: A Report From the American Heart Association. Circulation 123, e18–e209 (2011)

    Article  Google Scholar 

  2. Taylor, C.A., Figueroa, C.A.: Patient-specific Modeling of Cardiovascular Mechanics. Annu. Rev. BioMed. Eng. 11, 109–134 (2009)

    Article  Google Scholar 

  3. Mihalef, V., Ionasec, R., Wang, Y., Zheng, Y., Georgescu, B., Comaniciu, D.: Patient-specific Modeling of Left Heart Anatomy, Dynamics and Hemodynamics from High Resolution 4D CT. In: IEEE ISBI, pp. 504–507 (2010)

    Google Scholar 

  4. Niederer, S., Rhode, K., Razavi, R., Smith, N.: The Importance of Model Parameters and Boundary Conditions in Whole Organ Models of Cardiac Contraction. In: Ayache, N., Delingette, H., Sermesant, M. (eds.) FIMH 2009. LNCS, vol. 5528, pp. 348–356. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Humphrey, J.D., Yin, F.C.: Constitutive Relations and Finite Deformations of Passive Cardiac Tissue II: Stress Analysis in the Left Ventricle. Cir. Res. 65, 805–817 (1989)

    Article  Google Scholar 

  6. Guccione, J.M., McCulloch, A.D., Waldman, L.K.: Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model. J. Biomech. Eng. 113, 42–55 (1991)

    Article  Google Scholar 

  7. Arts, T., Hunter, W.C., Douglas, A.D., Muijtjens, A.M., Reneman, R.S.: Description of the Deformation of the Left Ventricle by a Kinematic Model. J. Biomechanics 25, 1119–1127 (1992)

    Article  Google Scholar 

  8. Costa, K.D., Hunter, P.J., Rogers, J.M., Guccione, J.M., Waldman, L.K., McCulloch, A.D.: A Three-Dimesional Finte Element Method for Large Elastic Deformations of Ventricular Myocardium: I–Cylindrical and Spherical Polar Coordinates. J. Biomech. Eng. 118, 452–463 (1996)

    Article  Google Scholar 

  9. Garson, C.D., Li, B., Acton, S.T., Hossack, J.A.: Guiding Automated Left Ventricular Chamber Segmentation in Cardiac Imaging Using the Concept of Conserved Myocardial Volume. Comp. Med. Imag. Graph 32, 321–330 (2008)

    Article  Google Scholar 

  10. Zhu, Y., Papademetris, X., Sinusas, A.J., Duncan, J.S.: A Coupled Deformable Model for Tracking Myocardial Borders from Real-time Echocardiography Using an Incompressibility Constraint. Med. Image Analysis 14, 429–448 (2010)

    Article  Google Scholar 

  11. Bistoquet, A., Oshinski, J., Skrinjar, O.: Myocardial Deformation Recovery from Cine MRI Using a Nearly Incompressible Biventricular Model. Med. Image Analysis 12, 69–85 (2008)

    Article  Google Scholar 

  12. Mansi, T., Pennec, X., Sermesant, M.: iLogDemons: A Demons-Based Registration Algorithm for Tracking Incompressible Elastic Biological Tissues. Int. J. Comput. Vis. 92, 92–111 (2010)

    Article  Google Scholar 

  13. Wang, Y., Georgescu, B., Comaniciu, D., Houle, S.: Learning-Based 3D Myocardial Motion Flow Estimation Using High Frame Rate Volumetric Ultrasound Data. In: IEEE ISBI, pp. 1097–1100 (2010)

    Google Scholar 

  14. Lediju, M.A., Pihl, M.J., Hsu, S.J., Dahl, J.J., Gallippi, C.M., Trahey, G.E.: A Motion-Based Approach to Abdominal Clutter Reduction. IEEE Trans. Ultrason. Ferro. Freq. Cont. 56, 2437–2449 (2009)

    Article  Google Scholar 

  15. Gallippi, C.M., Trahey, G.E.: Adaptive Clutter Filtering Via Blind Source Separation for Two-Dimensional Ultrasonic Blood Velocity Measurement. Ultrason. Imag. 24, 193–214 (2002)

    Article  Google Scholar 

  16. Adkins, J.E.: Some General Results in the Theory of Large Elastic Deformation. Proc. R. Soc. 231, 75–90 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  17. Spencer, A.J.M.: Continuum Mechanics. Longman Press, London (1980)

    MATH  Google Scholar 

  18. Aliev, M.K., Santos, P.D., Hoerter, J.A., Soboll, S., Tikhonov, A.N., Saks, V.A.: Water Content and Its Intracellular Distribution in Intact and Saline Perfused Rat Hearts Revisited. Cardio. Res. 53, 48–58 (2002)

    Article  Google Scholar 

  19. Vinnakota, K.C., Bassingthwaighte, J.B.: Myocardial Density and Composition: A Basis for Calculating Intracellular Metabolite Concentrations. Am. J. Physiol. Heart Circ. Phyiol. 286, H1742–H1749 (2004)

    Article  Google Scholar 

  20. Judd, R.M., Levy, B.I.: Effects of Barium-induced Cardiac Contraction on Large- and Small-Vessel Intramyocardial Blood Volume. Circulation 68, 217–225 (1991)

    Article  Google Scholar 

  21. Li, Y., Garson, C.D., Xu, Y., Beyers, R.J., Epstein, F.H., French, B.A., Hossack, J.A.: Quantification and MRI Validation of Regional Contractile Dysfunction in Mice Post Myocardial Infarction Using High Resolution Ultrasound. Ultrasound in Med. & Biol. 33, 894–904 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, D., Holmes, J.W., Hossack, J.A. (2011). An Ultrasound-Driven Kinematic Model of the Heart That Enforces Local Incompressibility. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics