Skip to main content

Anode Make and Break Excitation Mechanisms and Strength-Interval Curves: Bidomain Simulations in 3D Rotational Anisotropy

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6666))

Abstract

The shape of anodal strength-interval curves and make and break excitation mechanisms are investigated in a 2D anisotropic Bidomain model, with different membrane models and action potential durations, and in a 3D rotational anisotropic Bidomain model, with axisymmetric or orthotropic conductivity properties. The results have shown that the LRd model with a long intrinsic APD exhibits a systolic dip threshold lower than the diastolic threshold, in agreement with previous experimental data. The spatial and temporal analysis of the excitation patterns indicates a novel anode make excitation mechanism with delayed propagation within the transition from break to make mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balay, S., et al.: PETSc home page (2001), http://www.mcs.anl.gov/petsc

  2. Arevalo, H., Rodriguez, B., Trayanova, N.A.: Arrhythmogenesis in the heart: multiscale modeling of the effects of defibrillation shocks and the role of electrophysiological heterogeneity. Chaos 17(1), 015103 (2007)

    Article  MATH  Google Scholar 

  3. Caldwell, B.J., et al.: Three distinct directions of intramural activation reveal nonuniform side-to-side electric coupling of ventricular myocytes. Circ. Arrhythmia Electrophysiol. 2, 433–440 (2009)

    Article  Google Scholar 

  4. Cerbai, E., Barbieri, M., Mugelli, A.: Characterization of the hyperpolarization-activated current, I f in ventricular myocytes isolated from hypertensive rats. J. Physiol. 481(3), 585–591 (1994)

    Article  Google Scholar 

  5. Cheng, D.K., Tung, L., Sobie, E.A.: Nonuniform responses of transmembrane potential during electric field stimulation of single cardiac cells. Am. J. Physiol. Heart Circ. Physiol. 362, H351–H362 (1999)

    Google Scholar 

  6. Colli Franzone, P., Guerri, L., Taccardi, B.: Modeling ventricular excitation: axial and orthotropic anisotropy effects on wavefronts and potentials. Math. Biosci. 188, 191–205 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Effects of transmural electrical heterogeneities and electrotonic interactions on the dispersion of cardiac repolarization and action potential duration: a simulation study. Math. Biosci. 204(1), 132–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. DeBruin, K.A., Krassowska, W.: Electroporation and shock-induced transmembrane potential in a cardiac fiber during defibrillation strength shocks. Ann. Biomed. Eng. 26, 584–596 (1998)

    Article  Google Scholar 

  9. Dekker, E.: Direct current make and break thresholds for pacemaker electrodes on the canine ventricle. Circ. Res. 27, 811–823 (1970)

    Article  Google Scholar 

  10. DiFrancesco, D., Ferroni, A., Mazzanti, M., Tromba, C.: Properties of the hyperpolarizing-activated current (if) in cells from rabbit sini-atrial node. J. Physiol. 377, 61–88 (1986)

    Article  Google Scholar 

  11. Efimov, I.R., Gray, R.A., Roth, B.J.: Virtual electrodes and deexcitation: new insights into fibrillation induction and defibrillation. J. Cardiovasc Electrophysiol. 11, 339–353 (2000)

    Article  Google Scholar 

  12. Faber, G.M., Rudy, Y.: Action potential and contractility changes in [Na+](i) overloaded cardiac myocytes: A simulation study. Biophys. J. 78(5), 2392–2404 (2000)

    Article  Google Scholar 

  13. Henriquez, C.S., Ying, W.: The Bidomain model of cardiac tissue: from microscale to macroscale. In: Efimov, I.R., et al. (eds.) Cardiac Bioelectric Therapy, ch. 5.1, pp. 401–421. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Janks, D.L., Roth, B.J.: The bidomain theory of pacing. In: Efimov, I.R., et al. (eds.) Cardiac Bioelectric Therapy, ch. 2.1, pp. 63–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Luo, C., Rudy, Y.: A model of the ventricular cardiac action potential: depolarization, repolarization, and their interaction. Circ. Res. 68(6), 1501–1526 (1991)

    Article  Google Scholar 

  16. Mehra, R., Furmann, S.: Comparison of cathodal, anodal and bipolar strength - interval curves with temporary and permanent pacing electrodes. Br. Heart J. 41, 468–476 (1979)

    Article  Google Scholar 

  17. Pennacchio, M., Savaré, G., Colli Franzone, P.: Multiscale modeling for the bioelectric activity of the heart. SIAM J. Math. Anal. 37(4), 1333–1370 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Plank, G., et al.: Evaluation intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys. J. 94, 1904–1915 (2008)

    Article  Google Scholar 

  19. Ranjan, R., et al.: Mechanism of anode break stimulation in the heart. Biophys. J. 74, 1850–1863 (1998)

    Article  Google Scholar 

  20. Ranjan, R., Tomaselli, G.F., Marban, E.: A novel mechanism of anode-break stimulation predicted by bidomain modeling. Circ. Res. 84, 153–156 (1999)

    Article  Google Scholar 

  21. Roth, B.J., Wikswo Jr., J.P.: Electrical stimulation of cardiac tissue: a bidomain model with active membrane properties. IEEE Trans. Biomed. Eng. 41(3), 232–240 (1994)

    Article  Google Scholar 

  22. Roth, B.J.: Strength-Interval curve for cardiac tissue predicted using the bidomain model. J. Cardiovasc. Electrophysiol. 7, 722–737 (1996)

    Article  Google Scholar 

  23. Roth, B.J., Chen, J.: Mechanism of anode break excitation in the heart: the relative influence of membrane and electrotonic factors. J. Biol. Systems 7(4), 541–552 (1999)

    Article  Google Scholar 

  24. Sambelashvili, A., Nikolski, V.P., Efimov, I.R.: Virtual electrode theory explains pacing threshold increase caused by cardiac tissue damage. Am. J. Physiol Heart Circ. Physiol. 2194, H2183–H2194 (2004)

    Article  Google Scholar 

  25. Scacchi, S., et al.: Computing cardiac recovery maps from electrograms and monophasic action potentials under heterogeneous and ischemic conditions. Math. Mod. Meth. Appl. Sci. 20(7), 1089–1127 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sidorov, V.Y., et al.: Examination of stimulation mechanism and strength-interval curve in cardiac tissue. Am. J. Physiol Heart Circ. Physiol. 2615, H2602–H2615 (2005)

    Article  Google Scholar 

  27. Skouibine, K.B., Trayanova, N.A., Moore, P.: Anode/cathode make and break phenomena in a model of defibrillation. IEEE Trans. Biomed. Eng. 46(7), 769–777 (1999)

    Article  Google Scholar 

  28. Wikswo Jr., J.P., Roth, B.J.: Virtual electrode theory of pacing. In: Efimov, I.R., et al. (eds.) Cardiac Bioelectric Therapy, ch. 4.3, pp. 283–330. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Colli-Franzone, P., Pavarino, L.F., Scacchi, S. (2011). Anode Make and Break Excitation Mechanisms and Strength-Interval Curves: Bidomain Simulations in 3D Rotational Anisotropy. In: Metaxas, D.N., Axel, L. (eds) Functional Imaging and Modeling of the Heart. FIMH 2011. Lecture Notes in Computer Science, vol 6666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21028-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21028-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21027-3

  • Online ISBN: 978-3-642-21028-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics