Skip to main content

Recent Studies on Alginates Based Blends, Composites, and Nanocomposites

  • Chapter
  • First Online:
Book cover Advances in Natural Polymers

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 18))

Abstract

Alginate is the generic name given to the salts of alginic acids. Alginic acids are polyuronides, i.e., polysaccharides molecules which are built up of uronic acid residues, molecules with a carboxyl group on the carbon that is not part of the ring, Commercial alginates are currently obtained by extraction from brown seaweeds such as Laminaria digitata, Laminaria hyperborea, and Macrocystis pyrifera. However, several bacteria such as the nitrogen-fixing aerobe Azotobacter vinelandii and the opportunistic pathogen Pseudomonas aeruginosa also produce alginate. Alginates are unique in terms of their properties such as emulsifiers, thickeners, stabilizers, gelling and film forming, resulting in several applications for the food and pharmaceutical industries. Alginate has been regarded as an excellent polysachaccharide for gel systems because of its unique features such as biocompatibility, biodegradability, immnogenecity, and non-toxicity. In the biomedical area, alginates have been used as devices in several human health applications, such as excipients in drug delivery (DDS), wound dressings, as dental impression materials and in some formulations preventing gastric reflux, among others. Main characteristics and chemical modification, along with some interesting properties and applications are reviewed along this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Usov, A.I.: Alginic acids and alginates: analytical methods used for their estimation and characterization of composition and primary structure. Russ. Chem. Rev. 68, 957–966 (1999)

    CAS  Google Scholar 

  2. Chèze-Lange, H., Beunard, D., Dhulster, P., Guillochon, D., Cazé, A.M., Saude, N., Morcellet, M., Junter, G.A.: Production of microbial alginate in a membrane bioreactor. Enzym. Microb. Technol. 30, 656–661 (2002)

    Google Scholar 

  3. Hernández-Carmona, G., McHuge, D.J., Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E.: Pilot plant scale extraction of alginate from Macrocystis pyrifera. 1. Effect of pre-extraction treatments on yield and quality of alginate. J. Appl. Phycol. 10, 507–513 (1999)

    Google Scholar 

  4. Gómez, C.G., Pérez Lambrecht, M.V., Lozano, J.E., Rinaudo, M., Villar, M.A.: Influence of the extraction-purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera). Int. J. Biol. Macromol. 44, 365–371 (2009)

    Google Scholar 

  5. McHugh, D.J.: Production, properties and uses of alginates. In: McHugh, D.J. (ed.) Production and utilization of products from commercial seaweeds. FAO Fish. Aquaculture Tech. Pap. 288, 58–115 (1987)

    Google Scholar 

  6. Arvizu-Higuera, D.L., Hernández-Carmona, G., Rodríguez-Montesinos, Y.E.: Efecto del tipo de precipitación en el procesos de obtención de alginato de sodio: Método de alginato de calcio y método de ácido algínico. Cien. Marinas 23, 195–207 (1997)

    CAS  Google Scholar 

  7. Ertesvåg, H., Valla, S.: Biosynthesis and applications of alginates. Polym. Degrad. Stab. 59, 85–91 (1998)

    Google Scholar 

  8. Navarro da Silva, A., García-Cruz, C.H.: Biopolymers by Azotobacter vinelandii. In: Elnashar, M. (ed) Biopolymers 2010, InTech—Open Access Publisher, Chapter 21, 413–438 (2010)

    Google Scholar 

  9. Klöck, G., Pfefferman, A., Ryser, C., Gröhn, P., Kuttler, B., Hahn, H.J., Zimmermann, U.: biocompatibility of mannuronic acid-rich alginates. Biomaterials 18, 707–713 (1997)

    Google Scholar 

  10. Rowley, J.A., Madlambayan, G., Mooney, D.J.: Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20, 45–53 (1999)

    CAS  Google Scholar 

  11. Avella, M., Di Pace, E., Immirzi, B., Impallomeni, G., Malinconico, M., Santagata, G.: Addition of glycerol plasticizer to seaweeds derived alginates: Influence of microstructure on chemical-physical properties. Carbohydr. Polym. 69, 503–511 (2007)

    CAS  Google Scholar 

  12. Yang, J.S., Xie, Y.J., He, W.: Research progress on chemical modification of alginate: A review. Carbohydr. Polym. 84, 33–39 (2011)

    CAS  Google Scholar 

  13. Nakamura, K., Nishimura, Y., Hatakeyama, T., Hatakeyama, H.: Thermal properties of water insoluble alginate films containing di- and trivalent cations. Thermochim. Acta 267, 343–353 (1995)

    CAS  Google Scholar 

  14. Draget, K.I., Taylor, C.: Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 25, 251–256 (2011)

    CAS  Google Scholar 

  15. Sharon, N.: Complex carbohydrates, their chemistry, biosynthesis, and functions. Addison-Wesley Pub Co Reading, Massachussets (1975)

    Google Scholar 

  16. Kristiansen, K.A., Potthast, A., Christensen, B.E.: Periodate oxidation of polysaccharides for modification of chemical and physical properties. Carbohydr. Res. 345, 1264–1271 (2010)

    CAS  Google Scholar 

  17. Gómez, C.G., Rinaudo, M., Villar, M.A.: Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr. Polym. 67, 296–304 (2007)

    Google Scholar 

  18. Vold, I.M.N., Christensen, B.E.: Periodate oxidation of chitosans with different chemical compositions. Carbohydr. Res. 340, 679–684 (2005)

    CAS  Google Scholar 

  19. Vold, I.M.N., Kristiansen, K.A., Christensen, B.E.: A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7, 2136–2146 (2006)

    Google Scholar 

  20. Larsen, B., Painter, T.J.: The periodate-oxidation limit of alginate. Carbohydr. Res. 10, 186–187 (1969)

    CAS  Google Scholar 

  21. Perlin, A.S.: Glycol-cleavage oxidation. Adv. Carbohydr. Chem. Biochem. 60, 183–250 (2006)

    CAS  Google Scholar 

  22. Andresen, I.L., Painter, T., Smidsrød, O.: Concerning the effect of periodate oxidation upon the intrinsic viscosity of alginate. Carbohydr. Res. 59, 563–566 (1977)

    CAS  Google Scholar 

  23. Painter, T.J.: Control of depolymerisation during the preparation of reduced dialdehyde cellulose. Carbohydr. Res. 179, 259–268 (1988)

    CAS  Google Scholar 

  24. Pescosolido, L., Piro, T., Vermonden, T., Coviello, T., Alhaique, F., Hennink, W.E., Matricardi, P.: Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydr. Polym. 86, 208–213 (2011)

    CAS  Google Scholar 

  25. Bouhadir, K.H., Lee, K.Y., Alsberg, E., Damm, K.L., Anderson, K.W., Mooney, D.J.: Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog. 17, 945–950 (2001)

    CAS  Google Scholar 

  26. Li, X., Xu, A., Xie, H., Yu, W., Xie, W., Ma, X.: Preparation of low molecular weight alginate by hydrogen peroxide depolymerization for tissue engineering. Carbohydr. Polym. 79, 660–664 (2010)

    CAS  Google Scholar 

  27. Cosenza, V.A., Navarro, D.A., Stortz, Carlos A.: Usage of α-picoline borane for the reductive amination of carbohydrates, ARKIVOC 7, 182–194 (2011)

    Google Scholar 

  28. Rinaudo, M.: New amphiphilic grafted copolymers based on polysaccharides. Carbohydr. Polym. 83, 1338–1344 (2011)

    CAS  Google Scholar 

  29. Creuzet, C., Kadi, S., Rinaudo, M., Auzély-Velty, R.: New associative systems based on alkylated hyaluronic acid. Synthesis and aqueous solution properties. Polymer 47, 2706–2713 (2006)

    CAS  Google Scholar 

  30. Gómez, C.G., Chambat, G., Heyraud, A., Villar, M.A., Auzély-Velty, R.: Synthesis and characterization of a β-CD-alginate conjugate. Polymer 47, 8509–8516 (2006)

    Google Scholar 

  31. Boanini, E., Rubini, K., Panzavolta, S., Bigi, A.: Chemico-physical characterization of gelatin films modified with oxidized alginate. Acta Biomater. 6, 383–388 (2010)

    CAS  Google Scholar 

  32. Balakrishnan, B., Mohanty, M., Umashankar, P.R., Jayakrishnan, A.: Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatine. Biomaterials 26, 6335–6342 (2005)

    CAS  Google Scholar 

  33. Zhiyong, L., Caihua, N., Cheng, X., Qian, L.: Preparation and drug release of hydrophobically modified alginate. Chemistry 1, 93–96 (2009)

    Google Scholar 

  34. Alban, S., Schauerte, A., Franz, G.: Anticoagulant sulfated polysaccharides: Part I. Synthesis and structure-activity relationships of new pullulan sulphates. Carbohydr. Polym. 47, 267–276 (2002)

    CAS  Google Scholar 

  35. Fan, L., Jiang, L., Xu, Y., Zhou, Y., Shen, Y., Xie, W., Long, Z., Zhou, J.: Synthesis and anticoagulant activity of sodium alginate sulphates. Carbohydr. Polym. 83, 1797–1803 (2011)

    CAS  Google Scholar 

  36. Laurienzo, P., Malinconico, M., Motta, A., Vicinanza, A.: Synthesis and characterization of a novel alginate-poly(ethylene glycol) graft copolymer. Carbohydr. Polym. 62, 274–282 (2005)

    CAS  Google Scholar 

  37. Yang, L., Zhang, B., Wen, L., Liang, Q., Zhang, L.M.: Amphiphilic cholesteryl grafted sodium alginate derivative: Synthesis and self-assembly in aqueous solution. Carbohydr. Polym. 68, 218–225 (2007)

    CAS  Google Scholar 

  38. Kennedy, J.P.: Recent advances in polymer blends, grafts, and blocks. In: Sperling, L.H. (ed.) Plenum, New York (1974)

    Google Scholar 

  39. Yang, W., Zhang, L., Wu, L., Li, J., Wang, J., Jiang, H., Li, Y.: Synthesis and characterization of MMA-NaAlg/hydroxyapatite composite and the interface analyse with molecular dynamics. Carbohydr. Polym. 77, 331–337 (2009)

    CAS  Google Scholar 

  40. Işiklan, N., Inal, M., Kurşun, F., Ercan, G.: pH responsive itaconic acid grafted alginate microspheres for the controlled release of nifedipine. Carbohydr. Polym. 84, 933–943 (2011)

    Google Scholar 

  41. Yadav, M., Sand, A., Behari, K.: Synthesis and characterization of graft copolymer (alginate-g-poly(N, N-dimethylacrylamide). Chin. J. Polym. Sci. 28, 673–683 (2010)

    CAS  Google Scholar 

  42. Colinet, I., Dulong, V., Hamaide, T., Le Cerf, D., Picton, L.: New amphiphilic modified polysaccharides with original solution behaviour in salt media. Carbohydr. Polym. 75, 454–462 (2009)

    CAS  Google Scholar 

  43. Babak, V.G., Skotnikova, E.A., Lukina, I.G., Pelletier, S., Hubert, P., Dellacherie, E.: Hydrophobically associating alginate derivatives: Surface tension properties of their mixed aqueous solutions with oppositely charged surfactants. J. Colloid Interface Sci. 225, 505–510 (2000)

    CAS  Google Scholar 

  44. De Boisseson, M.R., Leonard, M., Hubert, P., Marchal, P., Stequert, A., Castel, C., Favre, E., Dellacherie, E.: Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: Bead formation, structure, and stability. J. Colloid Interface Sci. 273, 131–139 (2004)

    Google Scholar 

  45. Li, Q., Liu, C.G., Huang, Z.H., Xue, F.F.: Preparation and characterization of nanoparticles based on hydrophobic alginate derivative as carriers for sustained release of vitamin D3. J. Agric. Food Chem. 59, 1962–1967 (2011)

    CAS  Google Scholar 

  46. Lee, J.W., Park, J.H., Robinson, J.R.: Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci. 89, 850–866 (2000)

    CAS  Google Scholar 

  47. Bernkop-Schnurch, A.: Mucoadhesive polymers. In: Dumitriu, S. (ed.) Polymer Biomaterial, pp. 147–165, Marcel Dekker, New York (2002)

    Google Scholar 

  48. Davidovich-Pinhas, M., Bianco-Peled, H.: Alginate-PEGAc. A new mucoadhesive polymer. Acta Biomater. 7, 625–633 (2011)

    CAS  Google Scholar 

  49. Almany, L., Seliktar, D.: Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26, 2467–2477 (2005)

    CAS  Google Scholar 

  50. Ugi, I.: The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed. 1, 8–21 (1962)

    Google Scholar 

  51. Bu, H., Kjøniksen, A.L., Elgsaeter, A., Nyström, B.: Interaction of unmodified and hydrophobically modified alginate with sodium dodecylsulfate in dilute aqueous solution. Calorimetric, rheological, and turbidity studies. Colloids Surf. A Physicochem. Eng. Aspects 278, 166–174 (2006)

    CAS  Google Scholar 

  52. Bu, H., Kjøniksen, A.L., Knudsen, K.D., Nyström, B.: Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules 5, 1470–1479 (2004)

    CAS  Google Scholar 

  53. García, A., Hernández, K., Chico, B., García, D., Villalonga, M.L., Villalonga, R.: Preparation of thermostable trypsin-polysaccharide neoglycoenzymes trough Ugi multicomponent reaction. J. Mol. Catal. B: Enzym. 59, 126–130 (2009)

    Google Scholar 

  54. Eiselt, P., Lee, K.Y., Mooney, D.J.: Rigidity of two-component hydrogels prepared from alginate and poly(ethylene glycol)-diamines. Macromolecules 32, 5561–5566 (1999)

    Google Scholar 

  55. Lee, K.Y., Rowley, J.A., Eiselt, P., Moy, E.M., Bouhadir, K.H., Mooney, D.J.: Controlling mechanical and swelling properties of aginate hydrogels independently by cross-linker type and cross-linking density. Macromolecules 33, 4291–4294 (2000)

    CAS  Google Scholar 

  56. Kim, W.T., Chung, H., Shin, I.S., Yam, K.L., Chung, D.: Characterization of calcium alginate and chitosan-treated calcium alginate gel beads entrapping allyl isothiocyanate. Carbohydr. Polym. 71, 566–573 (2008)

    CAS  Google Scholar 

  57. Ribeiro, A.C.F., Sobral, A.J.F.N., Simões, S.M.N., Barros, M.C.F., Lobo, V.M.M., Cabral, A.M.T.D.P.V., Veiga, F.J.B., Santos, C.I.A.V., Esteso, M.A.: Transport properties of aqueous solutions of sodium alginate at 298.15 K. Food Chem. 125, 1213–1218 (2011)

    CAS  Google Scholar 

  58. Gazori, T., Khoshayand, M.R., Azizi, E., Yazdizade, P., Normani, A., Haririan, I.: Evaluation of alginate/chitosan nanoparticles as antisense delivery vector: Formulation, optimization and in vitro characterization. Carbohydr. Polym. 77, 599–606 (2009)

    CAS  Google Scholar 

  59. Soares, J.P., Santos, J.E., Chierice, G.O., Cavalheiro, E.T.G.: Thermal behavior of alginic acid and its sodium salt. Eclética Química 29, 57–63 (2004)

    CAS  Google Scholar 

  60. Davidovich-Pinhas, M., Bianco-Peled, H.: Physical and structural characteristics of acrylated poly(ethylene glycol)-alginate conjugates. Acta Biomater. 7, 2817–2825 (2011)

    CAS  Google Scholar 

  61. Andresen, I.L., Smidsørod, O.: Temperature dependence of the elastic properties of alginate gels. Carbohydr. Res. 58, 271–279 (1977)

    CAS  Google Scholar 

  62. Funami, T., Fang, Y., Noda, S., Ishihara, S., Nakauma, M., Draget, K.I., Nishinari, K., Phillips, G.O.: Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding. Food Hydrocolloids 23, 1746–1755 (2009)

    CAS  Google Scholar 

  63. Walsh, P.K., Isdell, F.V., Noone, S.M., O′Donovan, M.G., Malone, D.M.: Growth patterns of Saccharomyces cerevisiae microcolonies in alginate and carrageenan gel particles: Effect of physical and chemical properties of gels. Enzym. Microb. Technol. 18, 366–372 (1996)

    CAS  Google Scholar 

  64. Draget, K.I., Østgaard, K., Smidsrød, O.: Homogeneous alginate gels: A technical approach. Carbohydr. Polym. 14, 159–178 (1990)

    CAS  Google Scholar 

  65. Chan, L.W., Lee, H.Y., Heng, P.W.S.: Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr. Polym. 63, 176–187 (2006)

    CAS  Google Scholar 

  66. Münstedt, H., Auhl, D.: Rheological measuring techniques and their relevance for the molecular characterization of polymers. J. Non-newton. Fluid Mech. 128, 62–69 (2005)

    Google Scholar 

  67. Mancini, M., Moresi, M., Sappino, F.: Rheological behaviour of aqueous dispersions of algal sodium alginates. J. Food Eng. 28, 283–295 (1996)

    Google Scholar 

  68. Smidsrϕd, O.: Solution properties of alginate. Carbohydrate research 13, 359–372 (1970)

    Google Scholar 

  69. Clementi, F., Mancini, M., Moresi, M.: Rheology of alginate from Azotobacter vinelandii in aqueous dispersions. J. Food Eng. 36, 51–62 (1998)

    Google Scholar 

  70. Moe, S.T., Draget, K.I., Skjåk-Bræk, G., Smidsrød, O.: Alginate, In: Stephen, A.M. (ed.) Food Polysaccharides and their Applications, pp. 245–286. Marcel Dekker, Inc., New York (1995)

    Google Scholar 

  71. Sime, W.J.: Alginates. In: Harris, P. (ed.) Food gels, pp. 53-78. Elsevier Science Pub., London (1990)

    Google Scholar 

  72. Mancini, M., Moresi, M., Rancini, R.: Uniaxial compression and stress relaxation tests on alginate gels. J. Texture Stud. 30, 639–657 (1999)

    Google Scholar 

  73. Mitchell, J.R., Blanshard, J.M.V.: Rheological properties of alginate gels. J. Texture Stud. 7, 219–234 (1976)

    CAS  Google Scholar 

  74. Moresi, M., Mancini, M., Bruno, M., Rancini, R.: Viscoelastic properties of alginate gels by oscillatory dynamic tests. J. Texture Stud. 32, 375–396 (2001)

    Google Scholar 

  75. Kurachi, M., Nakashima, T., Miyajima, C., Iwamoto, Y., Muramatsu, T., Yamaguchi, K., Oda, T.: Comparison of the activities of various alginates to induce TNF-α secretion in RAW264.7 cells. J. Infect. Chemother. 11, 199–203 (2005)

    CAS  Google Scholar 

  76. Espevik, T., Rokstad, A.M., Kulseng, B., Strand, B., Skjåk-Bræk, G.: Mechanisms of the host immune response to alginate microcapsules. In: Hallé, J.P., de Vos, P., Rosenberg, L. (eds.) The bioartificial pancreas and other biohybrid therapies, Transworld Research Network, pp. 279–290 (2009)

    Google Scholar 

  77. Suzuki, S., Christensen, B.E., Kitamura, S.: Effect of mannuronate content and molecular weight of alginates on intestinal immunological activity through Peyer′s patch cells of C3H/HeJ mice. Carbohydr. Polym. 83, 629–634 (2011)

    CAS  Google Scholar 

  78. Dohnal, J., Štěpánek, F.: Inkjet fabrication and characterization of calcium alginate microcapsules. Powder Technol. 200, 254–259 (2010)

    CAS  Google Scholar 

  79. Ciofani, G., Raffa, V., Pizzorusso, T., Menciassi, A., Dario, P.: Characterization of an alginate-based drug delivery system for neurological applications. Med. Eng. Phys. 30, 848–855 (2008)

    Google Scholar 

  80. Kulkarni, A.R., Soppimath, K.S., Aminabhavi, T.M., Rudzinski, W.E.: In vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating networks beads. Eur. J. Pharm. Biopharm. 51, 127–133 (2001)

    CAS  Google Scholar 

  81. Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

    CAS  Google Scholar 

  82. Knill, C.J., Kennedy, J.F., Mistry, J., Miraftab, M., Smart, G., Groocock, M.R., Williams, H.J.: Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressing. Carbohydr. Polym. 55, 65–76 (2004)

    CAS  Google Scholar 

  83. Wang, Q., Hu, X., Du, Y., Kennedy, J.F.: Alginate/starch blend fibers and their properties for drug controlled release. Carbohydr. Polym. 82, 842–847 (2010)

    CAS  Google Scholar 

  84. Lansdown, A.B.G.: Calcium: a potent central regulator in wound healing in the skin. Wound Repair Regeneration 10, 271–285 (2002)

    Google Scholar 

  85. Hampson, F.C., Farndale, A., Strugala, V., Sykes, J., Jolliffe, I.G., Dettmar, P.W.: Alginate rafts and their characterisation. Int. J. Pharm. 294, 137–147 (2005)

    CAS  Google Scholar 

  86. Herranz, F., Almarza, E., Rodríguez, I., Salinas, B., Rosell, Y., Desco, M., Bulte, J.W., Ruiz-Cabello, J.: The application of nanoparticles in gene therapy and magnetic resonance imaging. Microsc. Res. Tech. 74, 577–591 (2011)

    CAS  Google Scholar 

  87. Berman, S.M., Walczak, P., Bulte, J.W.: MRI of transplanted neural stem cells. Methods Mol. Biol. 711, 435–449 (2011)

    Google Scholar 

  88. Kraitchman, D.L., Kedziorek, D.A., Bulte, J.W.: MR imaging of transplanted stem cells in myocardial infarction. Methods Mol. Biol. Part 2. 680, 141–152 (2011)

    Google Scholar 

  89. Barnett, B.P., Kraitchman, D.L., Lauzon, C., Magee, C.A., Walczak, P., Gilson, W.D., Arepally, A., Bulte, J.W.: Radiopaque alginate microcapsules for X-ray visualization and immunoprotection of cellular therapeutics. Mol. Pharm. 3, 531–538 (2006)

    CAS  Google Scholar 

  90. Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J.M., Kassis, I., Bulte, J.W., Petrou, P., Ben-Hur, T., Abramsky, O., Slavin, S.: Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194 (2010)

    Google Scholar 

  91. Brownlee, I.A., Allen, A., Pearson, J.P., Dettmar, P.W., Havler, E., Atherton, M.R., Onsøyen, E.: Alginate as a source of dietary fiber. Crit. Rev. Food Sci. Nutr. 45, 497–510 (2005)

    CAS  Google Scholar 

  92. Dettmar, P.W., Strugala, V., Richardson, J.C.: The key role alginates play in health. Food Hydrocolloids 25, 263–266 (2011)

    CAS  Google Scholar 

  93. King, S., See, H., Thomas, G., Swain, M.: Determining the complex modulus of alginate irreversible hydrocolloid dental material. Dent. Mater. 24, 1545–1548 (2008)

    CAS  Google Scholar 

  94. Maynard, E.M., Fernández, E., Normann, R.A.: A technique to prevent dural adhesions to chronically implanted microelectrode arrays. J. Neurosci. Methods 97, 93–101 (2000)

    CAS  Google Scholar 

  95. Becker, T.A., Preul, M.C., Bichard, W.D., Kipke, D.R., McDougall, C.G.: Calcium alginate gel as a biocompatible material for endovascular arteriovenous malformation embolization: six-month results in an animal model. Neurosurgery 56, 793–803 (2005)

    Google Scholar 

  96. Mammarella, E.M., Rubiolo, A.C.: Crosslinking kinetics of cation-hydrocolloid gels. Chem. Eng. J. 94, 73–77 (2003)

    CAS  Google Scholar 

  97. Nunamaker, E.A., Otto, K.J., Kipke, D.R.: Investigation of the material properties of alginate for the development of hydrogel repair of dura mater. J. Mech. Behav. Biomed. Mater. 4, 16–33 (2011)

    CAS  Google Scholar 

  98. Leitner, V.M., Walker, G.F., Bernkop-Schnurch, A.: Thiolated polymers: Evidence for the formation of disulfide bonds with mucus glycoproteins. Eur. J. Pharm. Biopharm. 56, 207–214 (2003)

    CAS  Google Scholar 

  99. Davidovich-Pinhas, M., Harari, O., Bianco-Peled, H.: Evaluating the mucoadhesive properties of drug delivery systems based on hydrated thiolated alginate. J. Controlled Release 136, 38–44 (2009)

    CAS  Google Scholar 

  100. Wang, Y.Y., Lai, S.K., Suk, J.S., Race, A., Cone, R., Hanes, J.: Addressing the PEG mucoadhesivity paradox to engineering nanoparticles that “slip” through the human mucus barrier. Angew. Chem. Int. 47, 9726–9729 (2008)

    CAS  Google Scholar 

  101. Taylor, C., Pearson, J.P., Draget, K.I., Dettmarc, P.W., Smidsrød, O.: Rheological characterisation of mixed gels of mucin and alginate. Carbohydr. Polym. 59, 189–195 (2005)

    CAS  Google Scholar 

  102. Rajaonarivony, M., Vauthier, C., Couarraze, A., Puisieux, F., Couvreur, P.: Development of a new drug carrier made from alginate. J. Pharm. Sci. 2, 912–917 (1993)

    Google Scholar 

  103. Motwani, S.K., Chopra, S., Talegaonkar, S., Kohli, K., Ahmad, F.J., Khar, R.K.: Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimization and in vitro characterization. Eur. J. Pharm. Biopharm. 68, 513–525 (2008)

    CAS  Google Scholar 

  104. Thomas, A., Harding, K.G., Moore, K.: Alginates from wound dressings activate human macrophages to secret tumour necrosis factor-α. Biomaterials 21, 1797–1802 (2000)

    CAS  Google Scholar 

  105. Paul, W., Sharma, C.P.: Chitosan and alginate wound dressings: A short review. Trends Biomater. Artif. Organs 18, 18–23 (2004)

    Google Scholar 

  106. Queen, D., Gaylor, J.D.S., Evans, J.H., Courtney, J.M., Reid, W.H.: The preclinical evaluation of the water vapour transmission rate through burn wound dressings. Biomaterials 8, 367–371 (1987)

    CAS  Google Scholar 

  107. Liu, Y., Chen, S., Zhong, L., Wu, G.Z.: Preparation of high-stable silver nanoparticle dispersion by using sodium alginate as a stabilizer under gamma radiation. Radiat. Phys. Chem. 78, 251–255 (2009)

    CAS  Google Scholar 

  108. Anh, N.T., Phu, D.V., Duy, N.N., Du, B.D., Hien, N.Q.: Synthesis of alginate stabilized gold nanoparticles by γ-irradiation with controllable size using different Au3+ concentration and seed particles enlargement. Radiat. Phys. Chem. 79, 405–408 (2010)

    Google Scholar 

  109. Corot, C., Robert, P., Idee, J.M., Port, M.: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Delivery Rev. 58, 1471–1504 (2006)

    CAS  Google Scholar 

  110. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    CAS  Google Scholar 

  111. Llanes, F., Ryan, D.H., Marchessault, R.H.: Magnetic nanostructured composites using alginates of different M/G ratios as polymeric matrix. Int. J. Biol. Macromol. 27, 35–40 (2000)

    CAS  Google Scholar 

  112. Morales, M.A., Finotelli, P.V., Coaquira, J.A.H., Rocha-Leão, M.H.M., Diaz-Aguila, C., Baggio-Saitovitch, E.M., Rossi, A.M.: In situ synthesis and magnetic studies of iron oxide nanoparticles in calcium-alginate matrix for biomedical applications. Mater. Sci. Eng. C 28, 253–257 (2008)

    CAS  Google Scholar 

  113. Leung, K.: Molecular imaging and contrast agent database (MICAD), National Institute of Health (2011)

    Google Scholar 

  114. Ma, H.L., Xu, Y.F., Qi, X.R., Maitani, Y., Nagai, T.: Preparation and characterization of super paramagnetic iron oxide nanoparticles stabilized by alginate. Int. J. Pharm. 333, 177–186 (2007)

    CAS  Google Scholar 

  115. Ma, H.L., Xu, Y.F., Qi, X.R., Maitani, Y., Nagai, T.: Super paramagnetic iron oxide nanoparticles stabilized by alginate: Pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int. J. Pharm. 354, 217–226 (2008)

    CAS  Google Scholar 

  116. Gololobov, Y.G., Zhmurova, I.N., Kasukhin, L.F.: Sixty years of Staudinger reaction. Tetrahedron 198(37), 437–472

    Google Scholar 

  117. Hall, K.K., Gattás-Asfura, K.M., Stabler, C.L.: Microencapsulation of islets within alginate/poly(ethylene glycol) gels cross-linked via Staudinger ligation. Acta Biomater. 7, 614–624 (2011)

    CAS  Google Scholar 

  118. Polyak, B., Geresh, S., Marks, R.S.: Synthesis and characterization of a biotin-alginate conjugate and its application in a biosensor construction. Biomacromolecules 5, 389–396 (2004)

    CAS  Google Scholar 

  119. Polyak, B., Bassis, E., Novodvorets, A., Belkin, S., Marks, R.S.: Bioluminescent whole cell optical fiber sensor to genotoxicants: System optimization. Sens. Actuators B 74, 18–26 (2001)

    Google Scholar 

  120. Abu-Rabeah, K., Marks, R.S.: Impedance study of the hybrid molecule alginate-pyrrole: Demonstration as host matrix for the construction of a highly sensitive amperometric glucose biosensor. Sens. Actuators B 136, 516–522 (2009)

    Google Scholar 

  121. Liu, C., Guo, X., Cui, H., Yuan, R.: An amperometric biosensor fabricated from electro-co-deposition of sodium alginate and horseradish peroxidase. J. Mol. Catal. B Enzym. 60, 151–156 (2009)

    CAS  Google Scholar 

  122. Eltzov, E., Pavluchkov, V., Burstin, M., Marks, R.S.: Creation of a fiber optic based biosensor for air toxicity monitoring. Sens. Actuators B 155, 859–867 (2011)

    Google Scholar 

  123. Ichijo, H., Hirasa, O., Kishi, R., Oowada, M., Sahara, K., Kokufuta, E., Kohno, S.: Thermo-responsive gels. Radiat. Phys. Chem. 46, 185–190 (1995)

    CAS  Google Scholar 

  124. Yu, J., Gu, Y., Du, K.T., Mihardja, S., Sievers, R.E., Lee, R.J.: The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials 30, 751–756 (2009)

    CAS  Google Scholar 

  125. Mc Cullen, S.D., Ramaswamy, S., Clarke, L.I., Gorga, R.G.: Nanofibrous composites for tissue engineering applications. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 369–390 (2009)

    CAS  Google Scholar 

  126. Abidian, M.R., Martin, D.C.: Multifunctional nanobiomaterials for neural interfaces. Adv. Funct. Mater. 19, 573–585 (2009)

    CAS  Google Scholar 

  127. Chou, A.I., Akintoye, S.O., Nicoll, S.B.: Photo-crosslinked alginate hydrogels support enhanced matrix accumulation by nucleus pulpous cells in vivo. Osteoarthritis Cartilage 17, 1377–1384 (2009)

    CAS  Google Scholar 

  128. Boerckel, J.D., Kolambkar, Y.M., Dupont, K.M., Uhrig, B.A., Phelps, E.A., Stevens, H.Y., García, A.J., Guldberg, R.E.: Effects of protein dose and delivery system on BMP-mediated bone regeneration. Biomaterials 32, 5241–5251 (2011)

    CAS  Google Scholar 

  129. Kulkarni, A.R., Soppimath, K.S., Aminabhavi, T.M., Controlled release of diclofenac sodium from sodium alginate beads crosslinked with glutaraldehyde. Pharm. Acta Helv. 74, 29–36 (1999)

    CAS  Google Scholar 

  130. Karewicz, A., Zasada, K., Szczubiałka, K., Zapotoczny, S., Lach, R., Nowakowska, M.: “Smart” alginate-hydroxypropylcellulose microbeads for controlled release of heparin. Int. J. Pharm. 385, 163–169 (2010)

    CAS  Google Scholar 

  131. Chan, L.W., Heng, P.W.S., Wan, L.S.C.: Effect of cellulose derivatives on alginate microspheres prepared by emulsification. J. Microencapsul. 14, 545–555 (1997)

    CAS  Google Scholar 

  132. Maysinger, D., Morinville, A.: Drug delivery to the nervous system. Trends Biotechnol. 15, 410–418 (1997)

    CAS  Google Scholar 

  133. Xu, Y., Zhan, C., Fan, L., Wang, L., Zheng, H.: Preparation of dual croslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery systems. J. Pharm. 336, 329–337 (2007)

    CAS  Google Scholar 

  134. De, S., Robinson, D.: Polymer relationships during preparation of chitosan-alginate and poly(l-lysine)-alginate nanospheres. J. Controlled Release 89, 101–112 (2003)

    CAS  Google Scholar 

  135. Dong, Z., Wang, Q., Du, Y.: Alginate/gelatin blend films and their properties for drug controlled release. J. Membr. Sci. 280, 37–44 (2006)

    CAS  Google Scholar 

  136. Razem, D., Katusin-Razem, B.: The effects of irradiation on controlled drug delivery/controlled drug release systems. Radiat. Phys. Chem. 77, 288–344 (2008)

    CAS  Google Scholar 

  137. Charoo, N.A., Kohli, K., Ali, A., Anwer, A.: Ophthalmic delivery of ciprofloxacin hydrochloride from different polymer formulations: In vitro and in vivo studies. Drug Dev. Ind. Pharm. 29, 215–221 (2003)

    CAS  Google Scholar 

  138. Yang, S.J., Lin, F.H., Tsai, H.M., Lin, C.F., Chin, H.C., Wong, J.M., Shieh, M.J.: Alginate-folic acid-modified chitosan nanoparticles for photodynamic detection of intestinal neoplasms. Biomaterials 32, 2174–2182 (2011)

    CAS  Google Scholar 

  139. Mladenovska, K., Cruaud, O., Richomme, P., Belamie, E., Raicki, R.S., Venier-Julienne, M.C., Popovski, E., Benoit, J.P., Goracinova, K.: 5-ASA loaded chitosan-Ca-alginate microparticles: Preparation and physicochemical characterization. Int. J. Pharm. 345, 59–69 (2007)

    CAS  Google Scholar 

  140. Mladenovska, K., Raicki, R.S., Janevik, E.I., Ristoski, T., Pavlova, M.J., Kavrakovski, Z., Dodov, M.G., Goracinova, K.: Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int. J. Pharm. 342, 124–136 (2007)

    CAS  Google Scholar 

  141. Joshi, G.V., Pawar, R.R., Kevadiya, B.D., Bajaj, H.C.: Mesoporous synthetic hectorites: A versatile layered host with drug delivery application. Microporous Mesoporous Mater. 142, 542–548 (2011)

    CAS  Google Scholar 

  142. Schmidt, J.J., Rowley, J., Kong, H.J.: Hydrogels used for cell-based drug delivery. J. Biomed. Mater. Res. Part A 87A, 1113–1122 (2008)

    CAS  Google Scholar 

  143. Boontheekul, T., Kong, H.J., Mooney, D.J.: Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26, 2455–2465 (2007)

    Google Scholar 

  144. Kong, H.J., Kaigler, D., Kim, K., Mooney, D.J.: Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 5, 1720–1727 (2004)

    CAS  Google Scholar 

  145. Hori, Y., Winans, A.M., Huang, C.C., Horrigan, E.M., Irvine, D.J.: Injectable dendritic cell-carrying alginate gels for immunization and immunotherapy. Biomaterials 29, 3671–3682 (2008)

    CAS  Google Scholar 

  146. Hori, Y., Winans, A.M., Irvine, D.J.: Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 5, 969–982 (2009)

    CAS  Google Scholar 

  147. Soon-Shiong, P., Heintz, R.E., Merideth, N., Yao, Q.X., Yao, Z., Zheng, T.: Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343, 950–951 (1994)

    CAS  Google Scholar 

  148. De Castro, M., Orive, G., Hernandez, R.M., Gascon, A.R., Pedraz, J.L.: Comparative study of microcapsules elaborated with three polycations (PLL, PDL, PLO) for cell immobilization. J. Microencapsul. 22, 303–315 (2005)

    Google Scholar 

  149. Sakai, S., Ono, T., Ijima, H., Kawakami, K.: Synthesis and transport characterization of alginate/aminopropyl-silicate/alginate microcapsule: Application to bioartifificial páncreas. Biomaterials 22, 2827–2834 (2001)

    CAS  Google Scholar 

  150. Orive, G., Hernández, R.M., Gascón, A.R., Igartua, M., Pedraz, J.L.: Encapsulated cell technology: From research to market. Trends Biotechnol. 20, 382–387 (2002)

    CAS  Google Scholar 

  151. Orive, G., Tam, S.K., Pedraz, J.L., Halle, J.P.: Biocompatibility of alginate-poly(l-lysine) microcapsules for cell therapy. Biomaterials 27, 3691–3700 (2006)

    CAS  Google Scholar 

  152. Bunger, C.M., Tiefenbach, B., Jahnke, A., Gerlach, C., Freier, T.H., Schmitz, K.P.: Deletion of the tissue response against alginate-PLL capsules by temporary release of co-encapsulated steroids. Biomaterials 26, 2353–2360 (2005)

    CAS  Google Scholar 

  153. Kulamarva, A., Raja, P.M.V., Bhathena, J., Chen, H., Talapatra, S., Ajayan, P.M., Nalamasu, O., Prakash, S.: Microcapsule carbon nanotube devices for therapeutic applications. Nanotechnology 20, 025612(1–7) (2009)

    Google Scholar 

  154. Rege, K., Raravikar, N.R., Kim, D.Y., Schadler, L.S., Ajayan, P.M., Dordick, J.S.: Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Lett. 3, 829–832 (2003)

    CAS  Google Scholar 

  155. Sugiura, S., Oda, T., Izumida, Y., Aoyagi, Y., Satake, M., Ochiai, A., Ohkohchi, N., Nakajima, M.: Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26, 3327–3331 (2005)

    CAS  Google Scholar 

  156. Ribeiro, C.C., Barrias, C.C., Barbosa, M.A.: Calcium phosphate-alginate microspheres as enzyme delivery matrices. Biomaterials 25, 4363–4373 (2004)

    CAS  Google Scholar 

  157. Akkaya, A., Uslan, A.H.: Sequential immobilization of urease to glycidyl methacrylate grafted sodium alginate. J. Mol. Catal. B Enzym. 67, 195–201 (2010)

    CAS  Google Scholar 

  158. Oussalah, M., Caillet, S., Salmieri, S., Saucier, L., Lacroix, M.: Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J. Food Prot. 69, 2364–2369 (2006)

    CAS  Google Scholar 

  159. Salmieri, S., Lacroix, M.: Physicochemical properties of alginate/poly-caprolactone-based films containing essential oils. J. Agric. Food Chem. 54, 10205–10214 (2006)

    CAS  Google Scholar 

  160. Conte, A., Scrocco, C., Sinigaglia, M., Del Nobile, M.A.: Innovative active packaging systems to prolong the shelf life of Mozzarella cheese. J. Dairy Sci. 90, 2126–2131 (2007)

    CAS  Google Scholar 

  161. Shin, J.W., Choi, S.H., Kim, D.E., Kim, H.S., Lee, J.H., Lee, I.S., Lee, E.Y.: Heterologous expression of an alginate lyase from Streptomyces sp. ALG-5 in Escherichia coli and its use for preparation of the magnetic nanoparticle-immobilized enzymes. Bioprocess Biosyst. Eng. 34, 113–119 (2011)

    CAS  Google Scholar 

  162. Takeda, H., Yoneyama, F., Kawai, S., Hashimoto, W., Murata, K.: Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ. Sci. 4, 2575–2581 (2011)

    CAS  Google Scholar 

  163. Athanasekou, C.P., Romanos, G.E., Kordatos, K., Kasselouri-Rigopoulou, V., Kakizisa, N.K., Sapalidisa, A.A.: Grafting of alginates on UF/NF ceramic membranes for wastewater treatment. J. Hazard. Mater. 182, 611–623 (2010)

    CAS  Google Scholar 

  164. de Moura, M.R., Guilherme, M.R., Campese, G.M., Radovanovic, E., Rubira, A.F., Muniz, E.C.: Porous alginate-Ca2+ hydrogels interpenetrated with PNIPAAm networks: Interrelationship between compressive stress and pore morphology. Eur. Polymer J. 41, 2845–2852 (2005)

    Google Scholar 

Download references

Acknowledgments

We express our gratitude to the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and the Universidad Nacional del Sur (UNS, Argentina).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lencina, M.S., Andreucetti, N.A., Gómez, C.G., Villar, M.A. (2013). Recent Studies on Alginates Based Blends, Composites, and Nanocomposites. In: Thomas, S., Visakh, P., Mathew, A. (eds) Advances in Natural Polymers. Advanced Structured Materials, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20940-6_7

Download citation

Publish with us

Policies and ethics