Skip to main content

Fully Green Elastomer Composites

  • Chapter
  • First Online:
Advances in Elastomers II

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 12))

  • 2024 Accesses

Abstract

In this chapter we will discuss the preparation of fully green elastomer composites. First we will define the term green and when we can classify a material as a green. Then we will discuss the alternatives for the replacement of major components of composite materials, viz. filler and matrix, which are usually derived from non-renewable and synthetic materials, with materials from renewable sources. Finally we will describe some work in which fully green elastomer composites were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwartz, M.M.: Composite Materials Handbook, p. 764. McGraw-Hill, New York (1991)

    Google Scholar 

  2. Bledzki, A.K., Gassan, J.: Composites reinforced with cellulose based fibres. Prog. Polym. Sci. 24, 221–274 (1999)

    Article  CAS  Google Scholar 

  3. Eichhorn, S.J., Baillie, C.A., Zafeiropoulos, N., Mwaikambo, L.Y., Ansell, M.P., Dufresne, A., Entwistle, K.M., Herrera-Franco, P.J., Escamilla, G.C., Groom, L., Hugues, M., Hill, C., Rials, T.G., Wild, P.M.: Review: current international research into cellulosic fibres and composites. J. Mat. Sci. 36, 2107–2131 (2001)

    Article  CAS  Google Scholar 

  4. Woodhams, R.T., Thomas, G., Rodges, D.K.: Wood fibers as reinforcing fillers for polyolefins. Polym. Eng. Sci. 24, 1166–1171 (1984)

    Article  CAS  Google Scholar 

  5. Kokta, B.V., Raj, R.G., Daneault, C.: Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym. Plast. Technol. Eng. 28, 247–259 (1989)

    Article  CAS  Google Scholar 

  6. Azizi Samir, M.A.S., Alloin, F., Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules. 6, 612–626 (2005)

    Google Scholar 

  7. Dufresne, A.: Comparing the mechanical properties of high performances polymer nanocomposites from biological sources. J. Nanosci. Nanotechnol. 6, 322–330 (2006)

    CAS  Google Scholar 

  8. John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)

    Article  CAS  Google Scholar 

  9. Dufresne, A.: Cellulose-based composites and nanocomposites. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 401–418. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  10. Neagu, R.C., Gamstedt, E.K., Berthold, F.: Stiffness contribution of various wood fibers to composite materials. J. Compos. Mat. 40, 663–669 (2006)

    Article  CAS  Google Scholar 

  11. Mohanty, A.K., Misra, M., Drzal, L.T.: Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J. Polym. Environ. 10, 19–26 (2002)

    Article  CAS  Google Scholar 

  12. Kubo, S., Yoshida, T., Kadla, J.F.: Surface porosity of lignin/PP blend carbon fibers. J. Wood Chem. Technol. 27, 257–271 (2007)

    Article  CAS  Google Scholar 

  13. Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., Griffith, W.: Lignin-based carbon fibers for composite fiber applications. Carbon 40, 2913–2920 (2002)

    Article  CAS  Google Scholar 

  14. Angellier, H., Choisnard, L., Molina-Boisseau, S., Ozil, P., Dufresne, A.: Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5, 1545–1551 (2004)

    Article  CAS  Google Scholar 

  15. Hill, C.A.S.: Wood Modification: Chemical, Thermal and Other Processes, p. 239. Wiley, Chichester (2006)

    Book  Google Scholar 

  16. Belgacem, M.N., Gandini, A.: Chemical modification of wood. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 419–431. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  17. Ly, B., Belgacem, M.N., Bras, J., Salon, M.C.B.: Grafting of cellulose by fluorine-bearing silane coupling agents. Mat. Sci. Eng. 30, 343–347 (2009)

    Google Scholar 

  18. Pasquini, D., Belgacem, M.N., Gandini, A., Curvelo, A.A.S.: Surface esterification of cellulose fibers: characterization by DRIFT and contact angle measurements. J. Colloid Interface Sci. 295, 79–83 (2006)

    Article  CAS  Google Scholar 

  19. Shafrin, E.G.: Critical surface tensions of polymers. In: Brandrup, J., Immergut, E.H. (eds.) Polymer Handbook, 2nd edn, p. III:221–228. Wiley-Interscience, New York (1975)

    Google Scholar 

  20. Falsafi, A., Mangipudi, S., Owen, M.J.: Surface and interfacial properties. In: Mark, J.E (ed.) Physical Properties of Polymers Handbook, 2nd edn, p. 1011–1020. Springer, New York (1900)

    Google Scholar 

  21. Cunha, A.G., Gandini, A.: Turning polysaccharides into hydrophobic materials: a critical review. Part 1–cellulose. Cellulose 17, 875–889 (2010)

    Article  CAS  Google Scholar 

  22. Cunha, A.G., Gandini, A.: Turning polysaccharides into hydrophobic materials: a critical review. Part 2–hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17, 1045–1065 (2010)

    Article  CAS  Google Scholar 

  23. Pasquini, D., Teixeira, E.M., Curvelo, A.A.S., Belgacem, M.N., Dufresne, A.: Surface esterification of cellulose fibres: processing and characterisation of low-density polyethylene/cellulose fibres composites. Compos. Sci. Technol. 68, 193–201 (2008)

    Article  CAS  Google Scholar 

  24. Namazi, H., Dadkhah, A.: Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydr. Polym. 79, 731–737 (2010)

    Article  CAS  Google Scholar 

  25. Thielemans, W., Belgacem, M.N., Dufresne, A.: Starch nanocrystals with large chain surface modifications. Langmuir 22, 4804–4810 (2006)

    Article  CAS  Google Scholar 

  26. Feng, L., Zhou, Z., Dufresne, A., Huang, J., Wei, M., An, L.: Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J. Appl. Polym. Sci. 112, 2830–2837 (2009)

    Article  CAS  Google Scholar 

  27. Berlioz, S., Molina-Boisseau, S., Nishiyama, Y., Heux, L.: Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10, 2144–2151 (2009)

    Article  CAS  Google Scholar 

  28. Hofmann, W.: Rubber Technology Handbook, p. p. 651. Hanser, New York (1989)

    Google Scholar 

  29. Harper, C.A.: Handbook of Plastics, Elastomers, and Composites. McGraw-Hill, New York (1996)

    Google Scholar 

  30. Belgacem, M.N., Gandini, A. (eds.): Monomers, Polymers and Composites from Renewable Resources. Elsevier, Amsterdam (2008). p. 553

    Google Scholar 

  31. Li, F.K., Larock, R.C.: Synthesis, structure and properties of new tung oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. Biomacromolecules 4, 1018–1025 (2003)

    Article  CAS  Google Scholar 

  32. Kundu, P.P., Larock, R.C.: Novel conjugated linseed oil-styrene-divinylbenzene copolymers prepared by thermal polymerization. 1. Effect of monomer concentration on the structure and properties. Biomacromolecules 6, 797–806 (2005)

    Article  CAS  Google Scholar 

  33. Andjelkovic, D.D., Larock, R.C.: Novel rubbers from cationic copolymerization of soybean oils and dicyclopentadiene. 1. Synthesis and characterization. Biomacromolecules 7, 927–936 (2006)

    Article  CAS  Google Scholar 

  34. Badrinarayanan, P., Lu, Y.S., Larock, R.C., Kessler, M.R.: Cure characterization of soybean oil-styrene-divinylbenzene thermosetting copolymers. J. Appl. Polym. Sci. 113, 1042–1049 (2009)

    Article  CAS  Google Scholar 

  35. Li, F.K., Hasjim, J., Larock, R.C.: Synthesis, structure, and thermophysical and mechanical properties of new polymers prepared by the cationic copolymerization of corn oil, styrene, and divinylbenzene. J. Appl. Polym. Sci. 90, 1830–1838 (2003)

    Article  CAS  Google Scholar 

  36. Marks, D.W., Li, F.K., Pacha, C.M., Larock, R.C.: Synthesis of thermoset plastics by Lewis acid initiated copolymerization of fish oil ethyl esters and alkenes. J. Appl. Polym. Sci. 81, 2001–2012 (2001)

    Article  CAS  Google Scholar 

  37. Andjelkovic, D.D., Valverde, M., Henna, P., Li, F.K., Larock, R.C.: Novel thermosets prepared by cationic copolymerization of various vegetable oils—synthesis and their structure-property relationships. Polymer 46, 9674–9685 (2005)

    Article  CAS  Google Scholar 

  38. Xia, Y., Larock, R.C.: Castor oil-based thermosets with varied crosslink densities prepared by ring-opening metathesis polymerization (ROMP). Polymer 51, 2508–2514 (2010)

    Article  CAS  Google Scholar 

  39. Li, F., Hanson, M.V., Larock, R.C.: Soybean oil-divinylbenzene thermosetting polymers: synthesis, structure, properties and their relationships. Polymer 42, 1567–1579 (2001)

    Article  CAS  Google Scholar 

  40. Avérous, L.: Biodegradable multiphase systems based on plasticized starch: a review. J. Macromol. Sci. Part C Polym. Rev. C44, 231–274 (2004)

    Google Scholar 

  41. Wang, X.L., Yang, K.K., Wang, Y.Z.: Properties of starch blends with biodegradable polymers. J. Macromol. Sci. Part C Polym. Rev. C43, 385–409 (2003)

    Google Scholar 

  42. Amass, W., Amass, A., Tighe, B.: A review of biodegradable polymers: uses, current development in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polyesters and recent advances in biodegradable studies. Polym. Int. 47, 89–144 (1998)

    Article  CAS  Google Scholar 

  43. Yu, L., Dean, K., Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 502–576 (2006)

    Article  CAS  Google Scholar 

  44. Arvanitoyannis, I., Kolokuris, I., Nakayama, A., Aiba, S.: Preparation and study of novel biodegradable blends based on gelatinized starch and 1,4-trans-polyisoprene (gutta percha) for food packaging or biomedical applications. Carbohydr. Polym. 34, 291–302 (1997)

    Article  CAS  Google Scholar 

  45. Rouilly, A., Rigal, L., Gilbert, R.G.: Synthesis and properties of composites of starch and chemically modified natural rubber. Polymer 45, 7813–7820 (2004)

    Article  CAS  Google Scholar 

  46. Carvalho, A.J.F., Job, A.E., Alves, N., Curvelo, A.A.S., Gandini, A.: Thermoplastic starch/natural rubber blends. Carbohydr. Polym. 53, 95–99 (2003)

    Article  CAS  Google Scholar 

  47. Garlotta, D.: A literature review of poly(lactic acid). J. Polym. Environ. 9, 63–84 (2002)

    Article  Google Scholar 

  48. Sodergard, A., Stolt, M.: Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 27, 1123–1163 (2002)

    Article  CAS  Google Scholar 

  49. Lenz, R., Marchessault, R.H.: Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 6, 1–8 (2005)

    Article  CAS  Google Scholar 

  50. Muller, H.M., Seebach, D.: Poly(hydroxyalkanoates)—a 5th class of physiologically important organic biopolymers. Angew. Chem. 32, 477–502 (1993)

    Article  Google Scholar 

  51. Martin, O., Avérous, L.: Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42, 6237–6247 (2001)

    Google Scholar 

  52. Sudesh, K., Abe, H., Doi, Y.: Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000)

    Google Scholar 

  53. Impallomeni, G., Giuffrida, M., Barbuzzi, T., Musumarra, G., Ballistreri, A.: Acid catalyzed transesterification as a route to poly(3-hydroxybutyrate-co-ε-caprolactone) copolymers from their homopolymers. Biomacromolecules 3, 835–840 (2002)

    Article  CAS  Google Scholar 

  54. Osborne, T.B.: The Vegetable Proteins, p. 154. Longmans Green and Company, London (1924)

    Google Scholar 

  55. Kumar, R., Liu, D., Zhang, L.: Advances in proteinous biomaterials. J. Biobased Mat. Bioenergy 2, 1–24 (2008)

    Article  CAS  Google Scholar 

  56. Lieberman, E.R., Gilbert, S.G.: Gas permeation of collagen films as affected by crosslinkage, moisture, and plasticizer content. J. Polym. Sci. Part C Polym. Symp. 41, 33–43 (1973)

    Google Scholar 

  57. Cuq, B., Gontard, N., Cuq, J.L., Guilbert, S.: Selected functional properties of fish myofibrillar protein-based films as affected by hydrophilic plasticizers. J. Agric. Food Chem. 45, 622–626 (1997)

    Article  CAS  Google Scholar 

  58. Liu, D., Zhang, L.: Structure and properties of soy protein plastics plasticized with acetamide. Macromol. Mat. Eng. 291, 820–828 (2006)

    Article  CAS  Google Scholar 

  59. Chen, P., Zhang, L.: New evidences of glass transitions and microstructures of soy protein plasticized with glycerol. Macromol. Biosci. 5, 237–245 (2005)

    Article  CAS  Google Scholar 

  60. Graiver, D., Waikul, L.H., Berger, C., Narayan, R.: Biodegradable soy protein-polyester blends by reactive extrusion process. J. Appl. Polym. Sci. 92, 3231–3239 (2004)

    Article  CAS  Google Scholar 

  61. Zhou, Q., Zhang, L., Zhang, M., Wang, B., Wang, S.: Miscibility, free volume behavior and properties of blends from cellulose acetate and castor oil-based polyurethane. Polymer 44, 1733–1739 (2003)

    Article  CAS  Google Scholar 

  62. Yoshioka, M., Hagiwara, N., Shiraishi, N.: Thermoplasticization of cellulose acetates by grafting of cyclic esters. Cellulose 6, 193–212 (1999)

    Article  CAS  Google Scholar 

  63. Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A., Sheikh, M.A.: Molecular engineering of chitin based polyurethane elastomers. Carbohydr. Polym. 74, 149–158 (2008)

    Article  CAS  Google Scholar 

  64. Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatsh. Chem/Chem. Monthly 141, 653–659 (2010)

    Article  CAS  Google Scholar 

  65. Rao, V., Johns, J.: Thermal behavior of chitosan/natural rubber latex blends: TG and DSC analysis. J. Therm. Anal. Calorim. 92, 801–806 (2008)

    Article  CAS  Google Scholar 

  66. Barikani, M., Honarkar, H., Barikani, M.: Synthesis and characterization of polyurethane elastomers based on chitosan and poly(ε-caprolactone). J. Appl. Polym. Sci. 112, 3157–3165 (2009)

    Article  CAS  Google Scholar 

  67. Ciobanu, C., Ungureanu, M., Ignat, L., Ungureanu, D., Popa, V.I.: Properties of lignin–polyurethane films prepared by casting method. Ind. Crops Prod. 20, 231–241 (2004)

    Article  CAS  Google Scholar 

  68. Gandini, A., Belgacem, M.N.: Partial or total oxypropilation of natural polymers and the use of the ensuing materials as composites or polyol macromonomers. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 273–288. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  69. Velazquez-Morales, P., Gandini, A., Le Nest, J.P.: Polymer electrolytes derived from chitosan/polyether networks. Electrochim. Acta 43, 1275–1279 (1998)

    Article  CAS  Google Scholar 

  70. Fernandes, S., Freire, C.S.R., Pascoal-Neto, C., Gandini, A.: The bulk oxypropylation of chitin and chitosan and the characterization of the ensuing polyols. Green Chem. 10, 93–97 (2008)

    Article  CAS  Google Scholar 

  71. Evtouguina, M., Gandini, A., Barros, A.M., Cruz-Pinto, J.J., Pascoal-Neto, C., Belgacem, M.N.: The oxypropylation of cork residues: preliminary results. Bioresour. Technol. 73, 187–189 (2000)

    Article  Google Scholar 

  72. Evtiouguina, M., Barros-Timmons, A.M., Cruz-Pinto, J.J.C., Pascoal Neto, C., Belgacem, M.N., Gandini, A.: Oxypropylation of cork and use of the ensuing polyols in the polyurethane formulation. Biomacromolecules 3, 57–62 (2002)

    Article  CAS  Google Scholar 

  73. Pavier, C., Gandini, A.: Oxyproylation of sugar beet pulp. 1. Optimization of the reaction. Ind. Crops Prod. 12, 1–8 (2000)

    Article  CAS  Google Scholar 

  74. Pavier, C., Gandini, A.: Urethanes and polyurethanes from oxypropylated sugar beet pulp. I. Kinetic study in solution. Eur. Polymer J. 36, 1653–1658 (2000)

    Article  CAS  Google Scholar 

  75. Serrano, L., Alriols, M.G., Briones, R., Mondragón, I., Labidi, J.: Oxypropylation of rapeseed cake residue generated in the biodiesel production process. Ind. Eng. Chem. Res. 49, 1526–1529 (2010)

    Article  CAS  Google Scholar 

  76. Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Belgacem, M.N.: Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res. 48, 2583–2589 (2009)

    Article  CAS  Google Scholar 

  77. Matos, M., Barreiro, M.F., Gandini, A.: Olive stone as a renewable source of biopolyols. Ind. Crops Prod. 32, 7–12 (2010)

    Article  CAS  Google Scholar 

  78. Gandini, A., Belgacem, M.N.: Furan derivatives and furan chemistry at the service of macromolecular materials. In: Belgacem, M.N., Gandini, A. (eds.) Monomers, Polymers and Composites from Renewable Resources, pp. 115–152. Elsevier, Amsterdam (2008)

    Chapter  Google Scholar 

  79. Gandini, A., Coelho, D., Gomes, M., Reis, B., Silvestre, A.: Materials from renewable resources based on furan monomers and furan chemistry: work in progress. J. Mat. Chem. 19, 8656–8664 (2009)

    Article  CAS  Google Scholar 

  80. Gandini, A.: Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym. Chem. 1, 245–251 (2010)

    Article  CAS  Google Scholar 

  81. Gandini, A., Belgacem, M.N.: Furfural and furanic polymers. Actual. Chim. 11–12, 56–61 (2002)

    Google Scholar 

  82. Gandini, A.: Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 41, 9491–9504 (2008)

    Article  CAS  Google Scholar 

  83. Lasseuguette, E., Gandini, A., Belgacem, M.N., Timpe, H.J.: Synthesis, characterization and photocross-linking of copolymers of furan and aliphatic hydroxyethylesters prepared by transesterification. Polymer 46, 5476–5483 (2005)

    Article  CAS  Google Scholar 

  84. Gandini, A., Belgacem, M.N.: Furans in polymer chemistry. Prog. Polym. Sci. 22, 1203–1379 (1997)

    Article  CAS  Google Scholar 

  85. Moreau, C., Gandini, A., Belgacem, M.N.: Recent catalytic advances in the chemistry of substituted furans from carbohydrates and in the ensuing polymers. Top. Catal. 27, 11–30 (2004)

    Article  CAS  Google Scholar 

  86. Geethamma, V.G., Joseph, R., Thomas, S.: Short coir fiber reinforced natural rubber composites: effects of fiber length, orientation, and alkali treatment. J. Appl. Polym. Sci. 55, 583–594 (1995)

    Article  CAS  Google Scholar 

  87. Geethamma, V.G., Kalaprasad, G., Groeninckx, G., Thomas, S.: Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos. Part A Appl. Sci. Manuf. 36, 1499–1506 (2005)

    Article  CAS  Google Scholar 

  88. Varghese, S., Kuriakose, B., Thomas, S., Koshy, A.T.: Mechanical and viscoelastic properties of short fiber reinforced natural rubber composites: effects of interfacial adhesion, fiber loading, and orientation. J. Adhes. Sci. Technol. 8, 235–248 (1994)

    Article  CAS  Google Scholar 

  89. Jacob, M., Thomas, S., Varughese, K.T.: Biodegradability and aging studies of hybrid biofiber reinforced natural rubber biocomposites. J. Biobased Mat. Bioenergy 1, 118–126 (2007)

    Article  Google Scholar 

  90. Nassar, M.M., Ashour, E.A., Washid, S.S.: Thermal characteristics of bagasse. J. Appl. Polym. Sci. 61, 885–890 (1996)

    Article  CAS  Google Scholar 

  91. De, D., De, D., Adhikari, B.: Curing characteristics and mechanical properties of alkali-treated grass-fiber-filled natural rubber composites and effects of bonding agent. J. Appl. Polym. Sci. 101, 3151–3160 (2006)

    Article  CAS  Google Scholar 

  92. Bhattacharya, T.B., Biswas, A.K., Chaterjee, J., Pramanick, D.: Short pineapple leaf fibre reinforced rubber composites. Plast. Rubber Process. Appl. 6, 119–125 (1986)

    Google Scholar 

  93. Lopattananon, N., Panawarangkul, K., Sahakaro, K., Ellis, B.: Performance of pineapple leaf fiber-natural rubber composites: the effect of fiber surface treatments. J. Appl. Polym. Sci. 102, 1974–1984 (2006)

    Article  CAS  Google Scholar 

  94. Arumugam, N., Tamareselvy, K., Venkata Rao, K., Rajalingam, P.: Coconut-fiber-reinforced rubber composites. J. Appl. Polym. Sci. 37, 2645–2659 (1989)

    Article  CAS  Google Scholar 

  95. Mathew, L., Joseph, K.U., Joseph, R.: Isora fibres and their composites with natural rubber. Prog. Rubber Plast. Recycl. Technol. 20, 337–349 (2004)

    CAS  Google Scholar 

  96. Joseph, S., Appukuttan, S.P., Kenny, J.M., Puglia, D., Thomas, S., Joseph, K.: Dynamic mechanical properties of oil palm microfibril-reinforced natural rubber composites. J. Appl. Polym. Sci. 117, 1298–1308 (2010)

    CAS  Google Scholar 

  97. Madani, M., Basta, A.H., Abdo, A.E.-S., El-Saied, H.: Utilization of waste paper in the manufacture of natural rubber composite for radiation shielding. Prog. Rubbers Plast. Recycl. Technol. 20, 210–287 (2004)

    Google Scholar 

  98. Jacob, M., Thomas, S., Varughese, K.T.: Novel woven sisal fabric reinforced natural rubber composites: tensile and swelling characteristics. J. Compos. Mat. 40, 1471–1485 (2006)

    Article  CAS  Google Scholar 

  99. Jacob, M., Varughese, K.T., Thomas, S.: Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos. Sci. Technol. 64, 955–965 (2004)

    Article  CAS  Google Scholar 

  100. Jacob, M., Varughese, K.T., Thomas, S.: Natural rubber composites reinforced with sisal/oil palm hybrid fiber: tensile and cure characteristics. J. Appl. Polym. Sci. 93, 2305–2312 (2004)

    Article  CAS  Google Scholar 

  101. Anuar, H., Ahmad, S.H., Rasid, R., Ahmad, A., Busu, W.N.W.: Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J. Appl. Polym. Sci. 107, 4043–4052 (2008)

    Article  CAS  Google Scholar 

  102. Pasquini, D., Teixeira, E.D., Curvelo, A.A.D., Belgacem, M.N., Dufresne, A.: Extraction of cellulose whiskers from cassava bagasse and their applications as reinforcing agent in natural rubber. Ind. Crops Prod. 32, 486–490 (2010)

    Article  CAS  Google Scholar 

  103. Bras, J., Hassan, M.L., Bruzesse, C., Hassan, E.A., El-Wakil, N.A., Dufresne, A.: Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind. Crops Prod. 32, 627–633 (2010)

    Article  CAS  Google Scholar 

  104. Bendahou, A., Kaddami, H., Dufresne, A.: Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur. Polymer J. 46, 609–620 (2010)

    Article  CAS  Google Scholar 

  105. Bendahou, A., Kaddami, H., Raihane, M., Habibi, Y., Dufresne, A.: Nanocomposite materials based on date palm tree cellulose whiskers. Rev. Roum. Chim. 54, 571–575 (2009)

    CAS  Google Scholar 

  106. Bendahou, A., Habibi, Y., Kaddami, H., Dufresne, A.: Physico-chemical characterization of palm from phoenix Dactylifera-L, preparation of cellulose whiskers and natural rubber-based nanocomposites. J. Biobased Mat. Bioenergy 3, 81–90 (2009)

    Article  CAS  Google Scholar 

  107. Nair, K.G., Dufresne, A., Gandini, A., Belgacem, M.N.: Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4, 1835–1842 (2003)

    Article  CAS  Google Scholar 

  108. Nair, K.G., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior. Biomacromolecules 4, 666–674 (2003)

    Article  CAS  Google Scholar 

  109. Nair, K.G., Dufresne, A.: Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4, 657–665 (2003)

    Article  CAS  Google Scholar 

  110. Siqueira, G., Abdillahi, H., Brass, J., Dufresne, A.: High reinforcing capability cellulose nanocrystals extracted from Syngonanthus nitens (Capim Dourado). Cellulose 17, 289–298 (2010)

    Article  CAS  Google Scholar 

  111. Mano, E.B., Nunes, R.C.R.: Regenerated cellulose in elastomer compounds. Eur. Polymer J. 19, 919–921 (1983)

    Article  CAS  Google Scholar 

  112. Kosikova, B., Alexy, P., Gregorova, A.: Use of lignin products derived from wood pulping as environmentally desirable component of composite rubber materials. Wood Res. 48, 62–67 (2003)

    CAS  Google Scholar 

  113. Jong, L.: Characterization of defatted soy flour and elastomer composites. J. Appl. Polym. Sci. 98, 353–361 (2005)

    Article  CAS  Google Scholar 

  114. Chen, Y., Zhang, L., Du, L.: Structure and properties of composites compression-molded from polyurethane prepolymer and various soy products. Ind. Eng. Chem. Res. 42, 6786–6794 (2003)

    Article  CAS  Google Scholar 

  115. Song, Y., Zheng, Q.: Structure and properties of methylcellulose microfiber reinforced wheat gluten based green composites. Ind. Crops Prod. 29, 446–454 (2009)

    Article  CAS  Google Scholar 

  116. Gandini, A., Curvelo, A.A.S., Pasquini, D., de Menezes, A.J.: Direct transformation of cellulose fibres into self-reinforced composites by partial oxypropylation. Polymer 46, 10611–10613 (2005)

    Article  CAS  Google Scholar 

  117. de Menezes, A.J., Pasquini, D., Curvelo, A.A.S., Gandini, A.: Novel thermoplastic materials based on the outer-shell oxypropylation of corn starch granules. Biomacromolecules 8, 2047–2050 (2007)

    Article  CAS  Google Scholar 

  118. de Menezes, A.J., Pasquini, D., Curvelo, A.A.S., Gandini, A.: Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 2. Effect of catalyst on the mechanical and dynamic mechanical properties. Cellulose 16, 239–246 (2009)

    Article  CAS  Google Scholar 

  119. de Menezes, A.J., Pasquini, D., Curvelo, A.A.S., Gandini, A.: Self-reinforced composites obtained by the partial oxypropylation of cellulose fibers. 1. Characterization of the materials obtained with different types of fibers. Carbohydr. Polym. 76, 437–442 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Pasquini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pasquini, D. (2013). Fully Green Elastomer Composites. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers II. Advanced Structured Materials, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20928-4_5

Download citation

Publish with us

Policies and ethics