Skip to main content

Interphase Modification and Compatibilization of Rubber Based Blends

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

Abstract

Blending of two or more elastomers is carried out for several purposes. The properties of an elastomer blend depend strongly on its state of compatibility and miscibility. In this chapter, recent advances on development of interphase modification and compatibilization of rubber-based blends are summarized. Current trends in compatibilization of rubber/rubber blends, TPEs and other rubber/thermoplastic blends, natural polymer blends, rubber-based blends with and without filler modification are discussed in detail. Finally, new challenges and opportunities of rubber-based blends are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Karaağaç, B., Kaner, D., Deniz, V.: The effects of compatibility on the mechanical properties and fatigue resistance of IIR/EPDM rubber blends. Polym. Compos. 31(11), 1869 (2010)

    Google Scholar 

  2. Mangaraj, D.: Elastomer blends. Rubber Chem. Technol. 75(3), 365 (2002)

    Article  CAS  Google Scholar 

  3. Sebenik, U., Zupancic-Valant, A., Krajnc, M.: Investigation of rubber-rubber blends miscibility. Polym. Eng. Sci. 46, 1649 (2006)

    Google Scholar 

  4. Scares, B.G., Sirqueira, A.S., Oliveira, M.G., Almeida, M.S.M.: Compatibilization of elastomer-based blends. Macromol. Symposia 189, 45 (2002)

    Article  Google Scholar 

  5. Mathew, M., Ninan, K.N., Thomas, S.: Compatibility studies of polymer-polymer systems by viscometric techniques: nitrile rubber-based polymer blends. Polymer 39(25), 6235 (1998)

    Google Scholar 

  6. Koning, C., Van Duin, M., Pagnoulle, C., Jerome, R.: Strategies for compatibilization of polymer blends. Prog. Polym. Sci. 23, 707 (1998)

    Article  CAS  Google Scholar 

  7. Paul, D.R., Barlow, J.W.: Polymer blends(or alloys). J Macromol Sci: Reviews in Macromolecular Chemistry and Physics C18, 109 (1980)

    Google Scholar 

  8. Multicomponent polymeric materials. In: Paul, D.R., Sperling, L.H. (eds.) Advanced Chemistry Series, no. 211, ch. 2

    Google Scholar 

  9. Heggs,R.P., Marcus, J.L., Markham, D., Mangaraj,D.: Viscosity modifier for improved PC/Nylon blends. Plast. Eng. 4, 29 (1988)

    Google Scholar 

  10. Dikland, H.G., Van Duin, M.: Miscibility of EPM-EPDM blends. Rubber Chem. Technol. 76(2), 495, (2003)

    Google Scholar 

  11. Abdul Kader, M., Bhowmick, A.K.: New miscible elastomer blends from acrylate rubber and fluorocarbon rubber. Rubber Chem. Technol. 73(5), 889 (2000)

    Google Scholar 

  12. Setua, D.K., Gupta, Y.N.: One the use of micro thermal analysis to characterize compatibility of nitrile rubber blends. Thermochim. Acta 462, 32 (2007)

    Article  CAS  Google Scholar 

  13. Bhattacharya, A.: Radiation and industrial polymers. Prog. Polym. Sci. 25, 371 (2000)

    Article  CAS  Google Scholar 

  14. Yu, L., Dean, K., Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576 (2006)

    Article  CAS  Google Scholar 

  15. Razzak, M.T., Otsuhata, K., Tabata, Y., Onashi, F., Takeuchi, A.: Blood compatibility assessment of graft copolymer (NR-g-DMAA) tubes. Radiat. Phys. Chem. 39(6), 547 (1992)

    Google Scholar 

  16. Vallat, M.F., Giami, S., Coupard, A.: Elastomer-elastomer autoadhesion-Interphase gradient of elastic modulus. Rubber Chem. Technol. 72(4), 701 (1999)

    Google Scholar 

  17. Nakason, C., Nuansomsri, K., Kaesaman, A., Kiatkamjornwong, S.: Dynamic vulcanization of natural rubber/high density polyethylene blends: Effect of compatibilization, blend ratio and curing system. Polym. Testing 25, 782 (2006)

    Article  CAS  Google Scholar 

  18. George, J., Neelkantamn, N.R., Varughese, K.T., Thomas, S.: Dynamic mechanical properties of high density polyethylene and nitrile rubber blends: Effect of blend ratio, compatibilization and filler incorporation. Rubber Chem. Technol. 78(2), 286 (2005)

    Google Scholar 

  19. Rath, T., Kumar, S., Mahaling, R.N., Khatua, B.B., Das, C.K., Yadaw, S.B.: Mechanical, morphological and thermal properties of in situ ternary composites based on poly(ether imide), silicone rubber and liquid crystalline polymer. Mater. Sci. Eng., A 490, 198 (2008)

    Article  Google Scholar 

  20. Rouilly, A., Rigal, L., Gilbert, R.G.: Synthesis and properties of starch and chemically modified natural rubber. Polymer 45, 7813 (2004)

    Article  CAS  Google Scholar 

  21. Rouilly, A., Rigal, L.J.: J. Macromol. Sci.: Agro-materials: A bibliographic review. Polym. Rev. C42, 441 (2002)

    Article  CAS  Google Scholar 

  22. Tomka, I., Sala, R.: In: Blanshard, J.M.V., Lillford, P.J. (eds.) The Glassy State in Foods, p. 475. Nottingham University Press, England (1993)

    Google Scholar 

  23. Gaudin, S., Lourdin, D., Le Botlan, D., Ilari, J.L., Colonna, P.J.: Plasticisation of mobility in starch-sorbitol films. J. Cereal Sci. 29, 273 (1999)

    Article  CAS  Google Scholar 

  24. Dufresne, A., Vignon, M.R.: Improvement of starch film performances using cellulose microfibrils. Macromolecules 31, 2693 (1998)

    Article  CAS  Google Scholar 

  25. de Carvalho,A.J.F., Curvelo,A.A.S., Agnelli, J.A.M.: A first insight on composites of thermoplastic starch and kaolin. Carbohydr. Polym. 45, 189 (2001)

    Google Scholar 

  26. Wilhelm, H.M., Sierakowski, M.R., Souza, G.P., Wypych, F.: Starch films reinforced with mineral clay. Carbohydr. Polym. 52, 101 (2003)

    Article  CAS  Google Scholar 

  27. Onteniente, J.P., Etienne, F., Bureau, G., Prudhomme, J.C.: Fully biodegradable lubricated thermoplastic starches: Water desorption on extruded samples. Starch/Starke 48, 10 (1996)

    Article  Google Scholar 

  28. de Graaf, R.A., Janssen, L.P.B.M.: The production of a new partially biodegradable starch plastic by reactive extrusion. Polym. Eng. Sci. 40, 2086 (2000)

    Article  Google Scholar 

  29. Mohanty, A.K., Misra, M., Hinrichsen, G.: Biofibres, biodegradable polymers and biocomposites: An overview. Macromol. Mater. Eng. 276, 1 (2000)

    Article  Google Scholar 

  30. Halley, P., Rtgers, R., Coombs, S., Kettels, J., Gralton, J., Christie, G., Jenkins, M., Beh, H., Griffin, K., Jayasekara, R., Lonergan, G.: Developing biodegradable mulch films from starch-based polymers. Starch/Starke 53, 362 (2001)

    Article  CAS  Google Scholar 

  31. de Carvalho, A.J.F., Job, A., Alves, N., Curvelo, A., Gandini, A.: Carbohydr. Polym. 53, 95 (2003)

    Article  CAS  Google Scholar 

  32. Virgilio, N., Sarazin, P., Favis, B D.: Ultraporous poly(L-lactide) scaffolds prepared with quaternary immiscible polymer blends modified by copolymer brushes at the interface. Polymer 52(7), 1483 (2011)

    Google Scholar 

  33. Das, A., Mahaling, R.N., Stöckelhuber, K.W., Heinrich, G.: Reinforcement and migration of nanoclay in polychloroprene/ethylene-propylene-diene rubber blends. Compos. Sci. Technol. 71, 275 (2011)

    Article  Google Scholar 

  34. Kelnar, I., Rotrekl, J., Kotek, J., Kapralkova, L., Hromadkova, J.: Effect of montmorillonite on structure and properties of nanocomposite with PA6/PS/elastomer matrix. Eur. Polymer J. 45, 2760 (2009)

    Article  CAS  Google Scholar 

  35. Ali, Z., Le Hong, H., Illish, S., Turn-Albrecht, T., Radush, H.J.: Morphology development and compatibilization effect in nanoclay filled rubber blends. Polymer 51, 4580 (2010)

    Article  CAS  Google Scholar 

  36. Jia, D., Zhang, X.: Effect of MAH modified carbon black prepared by solid state grafting in situ on the adhesion between nylon 66 cords and natural rubber and dynamic mechanic properties of the vulcanizates. Rubber Chem. Technol. 75(4), 669, (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bağdagül Karaağaç .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karaağaç, B., Deniz, V. (2013). Interphase Modification and Compatibilization of Rubber Based Blends. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_9

Download citation

Publish with us

Policies and ethics