Skip to main content

Radiation Processing of Elastomers

  • Chapter
  • First Online:
Advances in Elastomers I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 11))

Abstract

The chapter provides introduction to radiation processing of solid state materials, using commercially available sources of ionizing radiation, i.e., radio-isotopic and/or accelerated electron beam installations. Dosimetry is described as the method of controlling progress of changes in irradiated material. Distribution of doses in irradiated material is described, allowing proper processing of polymers. Basics of radiation chemistry of polymers is explained, in particular of elastomers. Radiation-induced crosslinking is most interesting reaction, but it can be accompanied by undesired phenomena like chain scission. Specific phenomena like energy transfer occur in radiation processing; therefore, composites of elastomers with components of different radiation characteristics may show unexpected results. Examples of selected cases are described in details. Comparisons between traditional methods of crosslinking with these using ionizing radiation allow consideration of introduction of the latter into industrial praxis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zagórski, Z.P.: Radiation chemistry of spurs in polymers. In: Advances in Radiation Chemistry of Polymers, pp. 21–31. IAEA-TECDOC-1420, Vienna (2004)

    Google Scholar 

  2. Zagórski, Z.P.: Dosimetry as an Integral Part of Radiation Processing, pp. 257–264. IAEA-TECDOC-1070, Vienna, (1999)

    Google Scholar 

  3. Zagórski, Z.P.: Solid state radiation chemistry—features important in basic research and applications. Radiat. Phys. Chem. 56, 559–565 (1999)

    Article  Google Scholar 

  4. Głuszewski, W., Zagórski, Z.P.: Radiation effects in polypropylene/polystyrene blends as the model of aromatic protection effects. Nukleonika 53(Suppl.1), s21–s24 (2008)

    Google Scholar 

  5. Bik, J., Głuszewski, W., Rzymski, W.M., Zagórski, Z.P.: EB radiation crosslinking of elastomers. Radiat. Phys. Chem. 67, 421–423 (2003)

    Article  CAS  Google Scholar 

  6. Bik, J.M., Głuszewski, W., Rzymski*, W.M., Zagórski*, Z.P.: Electron beam crosslinking of hydrogenated acrylonitrile-butadiene rubber. Kautschuk, Gummi und Kunststoffe 57, 651–655 (2004)

    Google Scholar 

  7. Mirza, J., Schön, N., Thörmer, J.: ®Therban – Eigenschaftsbild und Vorzűge eines verschleiβfesten Elastomeren mit hoher Hitze-, Ozon- und Őlbeständigkeit. Kautsch. Gummi Kunstst. 39 (7/86), 615 (1986)

    CAS  Google Scholar 

  8. Casper, R., Rohde, E.: Zunehmende Bedeutung der Spezialkautschuke in Westeuropa. Kautsch. Gummi Kunstst. 41 (6/88), 541 (1988)

    Google Scholar 

  9. Thörmer, J., Mirza, J., Szentivanyi, Z., Obrecht, W.: Therban – Einfluβ des Vernetzungssystems auf das Verarbeitungsverhalten und das Eigenschaftsprofil von hydriertem Nitrilkautschuk (HNBR). Kautsch. Gummi Kunstst. 41 (12/88), 1208 (1988)

    Google Scholar 

  10. Zagórski, Z.P.: Dependence of depth-dose curves on the energy spectrum of 5 to 13 MeV electron beams. Radiat. Phys. Chem. 22, 409–418 (1983)

    Google Scholar 

  11. Zagórski, Z.P.: Thermal and electrostatic aspects of radiation processing of polymers. In: Singh, A., Silverman, J. (eds.) Radiation processing of polymers, pp. 271–287. Hanser Publishers, Munich (1992)

    Google Scholar 

  12. Zagórski, Z.P.: Modification, degradation and stabilization of polymers in view of the classification of radiation spurs. Radiat. Phys. Chem. 63, 9–19 (2002)

    Article  Google Scholar 

  13. Zagórski, Z.P.: Radiation chemistry of spurs in polymers. In: Advances in Radiation Chemistry of Polymers. Proceedings of a Technical Meeting Held in Notre Dame, pp. 21–31. Indiana, USA, 13–17 Sept 2003, IAEA-TECDOC-1420, Vienna (2004)

    Google Scholar 

  14. Charlesby, A., Pinner, S.H.: Analysis of the solubility behaviour of irradiated polyethylene and other polymers. Proc. Royal Soc. Lond. A249, 367–386, (1959)

    Google Scholar 

  15. Zhao, W., Yu, L., Zhong, X., Zhang, Y., Sun, J.: Radiation vulcanization of hydrogenated nitrile butadiene rubber (HNBR). J. Appl. Polymer Sci. 54, 1199–1205 (1994)

    Article  CAS  Google Scholar 

  16. Fedors, R.F., Landel, R.R.: Relationship between maximum extensibility of network and the degree of crosslinking and primary molecular weight. J. Appl. Polym. Sci. 19, 2709 (1975)

    Article  CAS  Google Scholar 

  17. Grobler, J.H.A., McGill, W.J.: Effect of network heterogeneity on tensile and tear strengths of radiation, peroxide, efficient and conventional cured polyisoprene. J. Polym. Sci. Pol. Phys. 32, 287–295 (1994)

    Article  CAS  Google Scholar 

  18. Perraud, S., Vallat, M.-F., Dawid, M.-O., Kuczynski, J.: Network characteristics of hydrogenated nitrile butadiene rubber networks obtained by radiation crosslinking by electron beam. Polym. Degrad. Stabil. 95, 1495–1501 (2010)

    Article  CAS  Google Scholar 

  19. Mc Graw-Hill Encyclopedia of Science & Technology, 7th edn. New York (1992)

    Google Scholar 

  20. Ullmans Encyclopedia of Industrial Chemistry, English Language Edition, VCH, Weinheim, Germany 1985–1988

    Google Scholar 

  21. Marwanta, E., Mizumo, T., Nakamura, N., Ohno, H.: Improved ionic conductivity of nitrile rubber/ionic liquid composites. Polymer 46, 3795–3800 (2005)

    Article  CAS  Google Scholar 

  22. Nastase, C., Nastase, F., Dumiru, A., Ionescu, M., Stamatin, I.: Thin film composites of nanocarbons-polyaniline obtained by plasma polymerization technique. Compos Part A Appl Sci Technol 36, 481–485 (2005)

    Article  Google Scholar 

  23. Zagórski, Z.P.: Radiation induced dehydrogenation of organics: from amino acids, to synthetic polymers, to bacterial spores. Indian J. Rad. Res. 3, 89–93 (2006)

    Google Scholar 

  24. Zagórski, Z.P., Głuszewski, W.: Irreversible radiolytic dehydrogenation of polymers—the key to recognition of mechanisms. INCT Annual Report, pp. 40–42 (2003)

    Google Scholar 

  25. Zagórski, Z.P.: Design and applications of a constant temperature box for high-energy electron-beam processing at temperatures −200 °C to 700 °C. Int. J. Appl. Radiat. Isot. 36, 243–245 (1985)

    Article  Google Scholar 

  26. Zagórski, Z.P.: Thermal effects in radiation processing (in Polish) Przem. Chem. (Warsaw) 51, 640–645 (1972)

    Google Scholar 

  27. Zagórski, Z.P.: Chapter: Thermal and electrostatic aspects of radiation processing of polymers. In: Singh, A., Silverman, J. (eds.) Radiation processing of polymers, pp. 271–287. Hanser Publishers, Munich (1992)

    Google Scholar 

  28. Broza, G., Kwiatkowska, M., Rosłaniec, Z., Schulte, K.: Processing and assessment of poly(butylene terephtalate) nanocomposites reinforced with oxidised single wall carbon nanotubes. Polymer 46, 5860–5867 (2005)

    Article  CAS  Google Scholar 

  29. Yanagishita, H., Arai, J., Sandoh, T., Negishi, H., Kitamoto, D., Ikegami, T., Haraya, K., Idemoto, Y., Koura, N.: Preparation of polyamide composite membranes grafted by electron beam irradiation. J. Membrane Sci. 232, 93–98 (2004)

    Article  CAS  Google Scholar 

  30. Sirisinha, K., Kawko, K.: Crosslinkable polypropylene composites made by the introduction of silane moieties. J. Appl. Polym. Sci. 97, 1476–1483 (2005)

    Article  CAS  Google Scholar 

  31. Mizutani, Y., Nago, S., Sasai, M.: Polypropylene composites with fine particles of poly(styrene-divylbenzene). J. Appl. Polym. Sci. 77, 1614–1620 (2000)

    Article  CAS  Google Scholar 

  32. Zilli, D., Chiliotte, C., Escobar, M.M., Bekeris, V., Rubiolo, G.R., Cukierman, A.L., Goyanes, S.: Magnetic properties of multi-walled carbon nanotube-epoxy composites. Polymer 46, 6090–6095 (2005)

    Article  CAS  Google Scholar 

  33. Pattanayak, A., Jana, S.C.: Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. Polymer 46, 5183–5193 (2005)

    Article  CAS  Google Scholar 

  34. Barone, J.R.: Polyethylene/keratin fiber composites with varying polyethylene crystallinity. Compos. Part A. Appl. Sci. Manuf. 36, 1518–1524 (2005)

    Article  Google Scholar 

  35. Kojima, Y., Usuki, A., Kawasumi, M., Okada, A., Kurauchi, T., Kamigaito, O.: Synthesis of nylon 6—clay hybrid by montmorillonite intercalated with e-caprolactam. J. Polym. Sci. Part A: Polym. Chem. 31, 983–986 (1993)

    Article  CAS  Google Scholar 

  36. Pinnavaia, T.J., Beall, G.W.: Polymer-Clay Nanocomposites. Wiley, New York (2000). (Chapter 6)

    Google Scholar 

  37. Nascimento, G.M., Constantino, V.R.L., Temperini, M.L.A.: Spectroscopic characterization of doped poly(benzidine) and its nanocomposite with cationic clay. J. Phys. Chem. B 108, 5564–5571 (2004)

    Article  Google Scholar 

  38. Loo, L.S., Gleason, K.K.: Investigation of polymer and nanoclay orientation distribution in nylon 6/montmorillonite nanocomposite. Polymer 45, 5933–5939 (2004)

    Article  CAS  Google Scholar 

  39. Galgali, G., Agarwal, S., Lele, A.: Effect of clay orientation on the tensile modulus of polypropylene-nanoclay composites. Polymer 45, 6059–6069 (2004)

    Article  CAS  Google Scholar 

  40. Stretz, H.A., Paul, D.R., Cassidy, P.E.: Poly(styrene-co-acrylonitryle)/montmorillonite organoclay mixtures: A model system for ABS nanocomposites. Polymer 46, 3818–3830 (2005)

    Article  CAS  Google Scholar 

  41. Filho, F.G.R., Melo, T.J.A., Rabello, M.S., Silva, S.M.L.: Thermal stability of nanocomposites based on polypropylene and bentonite. Polym. Degrad. Stabil. 89, 289–297 (2005)

    Article  Google Scholar 

  42. Zheng, X., Jijang, D., Wang, D., Wilkie, Ch.A.: Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay. Polym. Degrad. Stabil. 91, 289–297 (2005)

    Article  Google Scholar 

  43. Zhang, J., Jijang, D., Wilkie, Ch.A.: Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay. Polym. Degrad. Stabil. (2005) in printnie ma wogole

    Google Scholar 

  44. Szleifer, I., Yerushalmi-Rosen, R.: Polymers and carbon nanotubes-dimensionality, interactions and nanotechnology. Polymer 46, 7803–7818 (2005)

    Article  CAS  Google Scholar 

  45. Li, H., Yu, Y., Yang, Y.: Synthesis of exfoliated polystyrene/montmorillonite nanocomposite by emulsion polymerization using a zwitterions as the clay modifier. Europ. Polym. J. 41, 2016–2022 (2005)

    Article  CAS  Google Scholar 

  46. Pehlivan, H., Balkõse, D., Ülkü, S.: Tihminlioġlu, characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos. Sci. Technol. 65, 2049–2058 (2005)

    Article  CAS  Google Scholar 

  47. Morlat-Therias, S., Mailhot, B., Gardette, J.-L., Da Silva, C., Haidar, B., Vidal, A.: Photooxidation of ethylene-propylene-diene/montmorillonite nanocomposites. Polym. Deg. rad. Stabil. 90, 78–85 (2005)

    Google Scholar 

  48. Chan, E.R., Zhang, X., Lee, C.-Y., Neurock, M., Glotyer, S.C.: Simulations of tetrathethered organic/inorganic nanoco-polymer assemblies. Macromolecules 38, 6168–6180 (2005)

    Article  CAS  Google Scholar 

  49. Van Gisbergen, J., Overbergh, N.: Radiation effects on polymer blends. In: Singh, A., Silverman, J. (eds.) Radiation Processing of Polymers, pp. 51–69. Hanser Publishers, Munich (1992)

    Google Scholar 

  50. Przybytniak, G.K., Zagórski, Z.P., Żuchowska, D.: Free radicals in electron beam irradiated blend of polyethylene and butadiene-styrene block copolymer. Radiat. Phys. Chem. 55, 655–658 (1999)

    Article  CAS  Google Scholar 

  51. Żuchowska, D., Zagórski, Z.P., Przybytniak, G.K., Rafalski, A.: Influence of butadiene/styrene copolymers on the modification of polypropylene in electron beam irradiation. Int. J. Polym. Mater. 52, 335–344 (2003)

    Google Scholar 

  52. Czvikovsky, T.: Radiation processing of wood-plastic composites. In: Singh, A., Silverman, J. (eds.) Radiation Processing of Polymers, pp. 121–148. Hanser Publishers, Munich (1992)

    Google Scholar 

  53. Singh, A., Saunders, Ch.B.: Radiation processing of carbon fiber-acrylated epoxy composites. In: Singh, A., Silverman, J.(eds.) Radiation Processing of Polymers, pp. 187–203, Hanser Verlag, Munich (1992)

    Google Scholar 

  54. Singh, A., Saunders, C.B., Barnard, J.W., Lopata, V.J., Kremers, W., McDougall, T.E., Ching, M., Tateishi, M.: Electron processing of fibre-reinforced advanced composites. Radiat. Phys. Chem. 48, 153–170 (1996)

    Article  CAS  Google Scholar 

  55. Lopata, V.J., Saunders, C.B., Singh, A., Janke, C.J., Wrenn, G.E., Havens, S.J.: Electron beam-curable epoxy resins for the manufacture of high performance composites. Radiat. Phys. Chem. 56, 405–415 (1999)

    Article  CAS  Google Scholar 

  56. Spadaro, G., Calderaro, E., Tomarchio, E., Dispenza, C.: Novel epoxy formulations for high energy radiation curable composites. Radiat. Phys. Chem. 72, 465–473 (2005)

    Article  CAS  Google Scholar 

  57. Patel, M., Morrell, P.R., Murphy, J.J., Skinner, A., Maxwell, R.S.: Gamma radiation induced effects on silica and on silica-polymer interfacial interactions in filled polysiloxane rubber. Polym. Degrad. Stabil. 91, 406–413 (2006)

    Article  CAS  Google Scholar 

  58. Żuchowska, D., Zagórski, Z.P., Przybytniak, G.K., Rafalski, A.: Influence of butadiene/styrene copolymers on the modification of propylene in electron beam irradiation. Int. J. Polym. Mater. 52, 335–344 (2003)

    Article  Google Scholar 

  59. Charlesby, A.: How radiation affects long-chain polymers. Nucleonics 12(6), 18–25 (1954)

    Google Scholar 

  60. Dole, M.: History of the radiation cross-linking of polyethylene. J. Macromol. Sci-Chem. A 1597, 1403–1409 (1981)

    Google Scholar 

  61. Dole, M.: My research in the field of the radiation chemistry of high polymers, in early developments in radiation chemistry, pp. 81–90. Royal Society of Chemistry, Cambridge (1989)

    Google Scholar 

  62. Williams, T.F.W., Dole, M.: Irradiation of polyethylene. J. Phys. Chem. 81, 2919 (1956)

    Google Scholar 

  63. Lawton, E.J., Bueche, A.M., Balwit, J.S.: Irradiation of polymers by high-energy electrons. Nature 172, 76–77 (1953)

    Article  CAS  Google Scholar 

  64. Hunt, J.D., Alliger, G.: Rubber—application of radiation to tire manufacture. Radiat. Phys. Chem. 14, 39–53 (1979)

    CAS  Google Scholar 

  65. Silverman, J.: Current status of radiation processing. Radiat. Phys. Chem. 14, 17–21 (1979)

    Google Scholar 

  66. Silverman, J.: Radiation-induced and chemical crosslinking: A brief comparison. In: Radiation Processing of Polymers, pp. 15–22, Hanser Verlag, Munich, (1992)

    Google Scholar 

  67. Henglein, A.: Einfűhrung in die Strahlenchemie, p. 63. Verlag Chemie, Weinheim (1969)

    Google Scholar 

  68. Zagórski, Z.P.: Pulse radiolysis of solid and rigid systems. In: Mayer, J., Warsaw, PWN. (eds.) Properties and Reactions of Radiation Induced Transients, Selected Topics (1999), str. 219–233

    Google Scholar 

  69. Zagórski, Z.P.: Aqueous gelatine gels as the medium of pulse radiolysis. Radiat. Phys. Chem. 34, 839–847 (1989)

    Google Scholar 

  70. Zagórski, Z.P.: EB-crosslinking of elastomers, how does it compare with radiation crosslinking of other polymers? Radiat. Phys. Chem. 71, 261–267 (2004)

    Article  Google Scholar 

  71. Cracco, F., Arvia, A.J., Dole, M.: ESR studies of free radical decay in irradiated polyethylene. J. Phys. Chem. 37, 2449–2457 (1962)

    Article  CAS  Google Scholar 

  72. Sethi, M., Gupta, N.K., Srivastava, A.K.: Dynamic mechanical analysis of polyethylene and ethylene vinylacetate copolymer blends irradiated by electron beam. J. Appl. Polym. Sci. 86, 2429–2434 (2002)

    Article  CAS  Google Scholar 

  73. Zagórski, Z.P.: Diffuse reflection spectrophotometry (DRS) for recognition of products of radiolysis in polymers. Int. J. Polym. Mater. 52, 323–333 (2003)

    Article  Google Scholar 

  74. Zagórski, Z.P., Rafalski, A.: Radiation chemistry of polymers as recognized by diffuse reflectance spectrophotometry (DRS), INCT Annual Report 2000 (publ. 2001), pp. 35–37

    Google Scholar 

  75. Charlesby, A.: Effect of molecular weight distribution on gel formation by high energy radiation. J. Polym. Sci. 14, 547–653 (1954)

    Article  CAS  Google Scholar 

  76. Charlesby, A: The crosslinking of rubber by pile radiation. Atomics 5, 12–21 and 27 (1954)

    Google Scholar 

  77. Charlesby, A.: Effect of ionizing radiation on long chain olefins and acetylenes. Radiat. Res. 2, 96–107 (1955)

    Article  CAS  Google Scholar 

  78. Charlesby, A., Groves, D.: Crosslinking and radiation effects in some natural and synthetic rubbers. Rubber Chem. Technol. 30, 27–41, (1957)

    Google Scholar 

  79. Charlsby A., Atomic radiation and polymers, Pergamon Press, Oxford 1960

    Google Scholar 

  80. Zagórski, Z.P.: Consumption of oxygen in two- and three-phase systems under radiolytic conditions. (Pol.) Przemysł Chem. 48, 746–749 (1969)

    Google Scholar 

  81. Ambroż, H., Zieliński, W.: Sensitization of radiation cross-linking in the form of polyisoprene natural rubber latex. (in Polish). Parts I, II i III, Polimery 3,4,5, 112–114, 145–151, 194–201 (1968)

    Google Scholar 

  82. Ambroż, H., Zieliński W., Golecka E.: Radiatex – Nature of rubber latex, vulcanized by radiation, for use in medicine. (in Polish) Problemy Techn. Med. 1, 53 (1970)

    Google Scholar 

  83. Ambroż, H., Zieliński, W.: Radiation vulcanization of nature of latex. (in Polish) Polimery 17, 559 (1972)

    Google Scholar 

  84. Ambroż, H.: Some aspects of ɣ-radiolysis of polyisoprene in the form of natural rubber latex. J. Polym. Sci. Part C 42, 1339–1345 (1973)

    Google Scholar 

  85. Ambroż, H., Zieliński, W., Jaworska, E.: PURITEX—natural rubber latex for medical articles. Polim. Med. 3, 181–190 (1973)

    Google Scholar 

  86. Jankowski, B., Kroh, J.: Crosslinking of cis-polybutadiene by 60Co γ rays. Appl. Polym. Sci. 9, 1363–1366 (1965)

    Article  CAS  Google Scholar 

  87. Silverman, J.: Radiation-induced and chemical crosslinking: A brief comparison. In: Radiation Processing of Polymers, pp. 15–25. Hanser Verlag, Munich, (1992)

    Google Scholar 

  88. Cleland, M.R., Parks, L.A., Cheng, S.: Application for radiation processing of materials. Nucl. Instr. Meth. Phys. Res. B 208, 66–73, (2003)

    Google Scholar 

  89. Chmielewski, A.G., Haji-Saeid, M., Ahmed, S.: Progress in radiation processing of polymers. Nucl. Instr. Meth. Phys. Res. B 236, 44–54 (2005)

    Google Scholar 

  90. Katsumura Y.: An overview of the industrial applications of radiation in Japan. Workshop, presentation W-158 on the 5th International Symposium on Ionizing Radiation and Polymers (IRaP 2002), Canada, Sept 2002, full next not published

    Google Scholar 

  91. Machi, S.: Emerging Applications of Radiation Technology, TECDOC-1386, p. 5. IAEA, Vienna (2004)

    Google Scholar 

  92. Makkuchi, K.: In: Role of Radiation Processing in Material Science Applications, KAST, Riyadh, Saudi Arabia, 1999, after Chmielewski et al. [86], full text not published

    Google Scholar 

  93. Mizusawa K., Baba T.: In: Recent Developments in Electron Accelerator, Technology and Applications, IAEA, Internal Report Consultation Meeting, Quebec, Canada, 18–20 September 2002, after Chmielewski et al. [86], full text not published

    Google Scholar 

  94. Aoshuang, Y., Zhengtao, G., Li, L., Ying, Z., Peng, Z.: The mechanical properties of radiation-vulcanized NR/BR blending system. Radiat. Phys. Chem. 63, 497–500 (2002)

    Article  Google Scholar 

  95. Basfar, A.A., Silverman, J.: Improved ozone resistance of styrene-butadiene rubber cured by a combination of sulfur and ionizing radiation. J.Polym. Degr. Stabil. 46, 1–8, (1994)

    Google Scholar 

  96. Jayasuriya, M.M., Makuuchi, K., Yoshi, F.: Radiation vulcanization of natural rubber latex using TMPTMA and PEA. Eur. Polym. J. 37, 93–98, (2001)

    Google Scholar 

  97. Ratnam, C.T., Nasir, M., Baharin, A., Zaman K.: Electron beam irradiation of epoxidized natural rubber. Nucl. Instrum. Meth. B 171, 455–464 (2000)

    Google Scholar 

  98. Ratnam, C.T., Nasir, M., Baharin, A., Zaman, K.: Evidence of irradiation induced crosslinking in miscible blends of poly(vinyl chloride)/epoxidized natural rubber in presence of trimethylolpropane triacrylate. J. Appl. Polym. Sci. 81, 1914–1925 (2001)

    Article  CAS  Google Scholar 

  99. Ratnam, C.T., Nasir, M., Baharin, A., Zaman, K.: Electron-beam irradiation of poly(vinyl chloride)/epoxidized natural rubber blends in presence of trimethylolpropane triacrylate. J. Appl. Polym. Sci. 81, 1926–1935 (2001)

    Article  CAS  Google Scholar 

  100. Chattopadhyay, S., Chaki, T.K., Bhowmick, A.K.: Structural characterization of electron-beam crosslinked thermoplastic elastomeric films from blends of polyethylene and ethylene-vinyl acetate copolymers. J. Appl. Polym. Sci. 81, 1936–1950 (2001)

    Article  CAS  Google Scholar 

  101. Davenas, J., Stevenson, I., Celette, N., Vigier, G., David L.: Influence of the molecular modifications on the properties of EPDM elastomers under irradiation. Nucl. Instrum. Meth. B 208, 461–465, (2003)

    Google Scholar 

  102. Żuchowska, D., Zagórski, Z.P., Przybytniak, G.K., Rafalski, A.: Influence of butadiene/styrene copolymers on the modification of polypropylene in electron beam irradiation. Int. J. Polymeric Mater. 52, 335–344, (2003)

    Google Scholar 

  103. Magda, M.: Abou Zeid, Radiation effect on properties of carbon black filled NBR/EPDM rubber blends. Europ. Polym. J. 43, 4415–4422 (2007)

    Article  Google Scholar 

  104. Senna, M.M.H., Abdel-Monem, Y.K.: Effect of electron beam irradiation and reactive compatibilizers on some properties of polypropylene and epoxidized natural rubber polymer blends. J. Elastomers Plast. 42, 275–295 (2010)

    Google Scholar 

  105. Senna, M.M., Abdel Fatah, A.A., Manem, A.: Spectroscopic analysis and mechanical properties of elektron beam irradiate popylpropylene/epoxidized natura rubber (PP/ENR) polymer blends. Nucl. Instr. Meth. B 266, 2599–2609 (2008)

    Article  CAS  Google Scholar 

  106. Perraud, S., Vallat, M.-F., Kuczynski, J.: Radiation crosslinking of poly(ethylene-co-octene) with electron beam radiation. Macromol. Mater. Eng. 288, 117–123 (2003)

    Article  CAS  Google Scholar 

  107. George, S.C., Thomas, S.: Transport phenomena through polymer systems. Prog. Polym. Sci. 26, 985–1017, (2001)

    Google Scholar 

  108. Jonquieres, A., Clément, R., Lonchon, P.: Permeability of block copolymers to vapors and liquids. Prog. Polym. Sci. 27, 1803–1877, (2002)

    Google Scholar 

  109. Das, P.K., Ganguly, A., Banerji, M.: Electron-beam curing of hydrogenated acrylonitrile– butadiene rubber. J. Appl. Polym. Sci. 97, 648–651, (2005)

    Google Scholar 

  110. Zhao, W., Yu, L., Zhong, X., Zhang, Y., Sun J.: Radiation vulcanization of hydrogenated acrylonitrile butadiene rubber (HNBR). J. Appl. Polym. Sci. 54, 1199–1205, (1994)

    Google Scholar 

  111. Vallat, M.-F., Perraud, S., Kuczynski, J.: Curing of polymer blends by electron beam, Poster P-155, 5th International Symposium on Ionizing Radiation and Polymers, IRaP 2002, Canada Sept 2002, full text not published

    Google Scholar 

  112. Hill, D.J.T., O’Donnell, J.H., Perera, M.C.S., Pomery, P.J.: An investigation of radiation induced structural changes in nitrile rubber. J. Polym. Sci. A: Polym. Chem. 34, 2439-2454 (1996)

    Google Scholar 

  113. Wang, Q., Wang, F., Cheng, K.: Effect of crosslink density on some properties of electron beam-irradiated styrene-butadiene rubber. Rad. Phys. Chem. 78, 10001–11005 (2009)

    Google Scholar 

  114. Hafezi, M., Nouri Khorasani, S., Ziali, F., Zim, H.R.: Comparison of physicochemical properties of NBR-PV blend cured by sulfur and electron beam. J. Elastomers Plast. 39, 151–163 (2007)

    Article  CAS  Google Scholar 

  115. Mitra, S., Chattopadhyay, S., Bharadwaj, Y.K., Sabharwal, S., Bhowmick, A.K.: Effect of electron beam-crossinked rels on the rheological properties of raw natural rubber. Rad. Phys. Chem. 77, 630–642 (2008)

    Article  CAS  Google Scholar 

  116. Gluszewski W., Zagórski Z.P., Rajkiewicz M., Synergistic effects in the processes of crosslinking of elastomers, Summary published in book of abstracts for the Conference 10th IRAP 2012, submitted for publication

    Google Scholar 

Download references

Acknowledgments

Project is supported by the Polish Ministry of Science and Higher Education grant No N N209083838 (Synergistic systems of crosslinking elastomers).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. P. Zagórski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zagórski, Z.P., Kornacka, E.M. (2013). Radiation Processing of Elastomers. In: Visakh, P., Thomas, S., Chandra, A., Mathew, A. (eds) Advances in Elastomers I. Advanced Structured Materials, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20925-3_13

Download citation

Publish with us

Policies and ethics