Skip to main content

Faster 2-Regular Information-Set Decoding

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 6639))

Abstract

Fix positive integers B and w. Let C be a linear code over F 2 of length Bw. The 2-regular-decoding problem is to find a nonzero codeword consisting of w length-B blocks, each of which has Hamming weight 0 or 2. This problem appears in attacks on the FSB (fast syndrome-based) hash function and related proposals. This problem differs from the usual information-set-decoding problems in that (1) the target codeword is required to have a very regular structure and (2) the target weight can be rather high, so that there are many possible codewords of that weight.

Augot, Finiasz, and Sendrier, in the paper that introduced FSB, presented a variant of information-set decoding tuned for 2-regular decoding. This paper improves the Augot–Finiasz–Sendrier algorithm in a way that is analogous to Stern’s improvement upon basic information-set decoding. The resulting algorithm achieves an exponential speedup over the previous algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Augot, D., Finiasz, M., Gaborit, P., Manuel, S., Sendrier, N.: SHA-3 proposal: FSB (2008), http://www-rocq.inria.fr/secret/CBCrypto/fsbdoc.pdf , Citations in this document: §1, §1, §1, §5, §5, §5, §5

  2. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function (2003), http://eprint.iacr.org/2003/230 , Citations in this document: §1, §1, §1, §2, §3, §3, §3, §3, §3, §3, §4

  3. Augot, D., Finiasz, M., Sendrier, N.: A family of fast syndrome based cryptographic hash functions. In: Mycrypt 2005 [13], pp. 64–83 (2005), Citations in this document: §1, §1, §3

    Google Scholar 

  4. Bernstein, D.J., Lange, T., Niederhagen, R., Peters, C., Schwabe, P.: FSBday: implementing Wagner’s generalized birthday attack against the SHA-3 round-1 candidate FSB. In: Indocrypt 2009 [23], pp. 18–38 (2009), http://eprint.iacr.org/2009/292 , Citations in this document: §1

  5. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: PQCrypto 2008 [9], pp. 31–46 (2008), http://eprint.iacr.org/2008/318 , Citations in this document: §2, §4, §4

  6. Bernstein, D.J., Lange, T., Peters, C.: Ball-collision decoding (2010), http://eprint.iacr.org/2010/585 , Citations in this document: §2, §4

  7. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing (2011), http://eprint.iacr.org/2011/074 , Citations in this document: §1, §1, §5

  8. Bernstein, D.J., Lange, T., Peters, C., van Tilborg, H.: Explicit bounds for generic decoding algorithms for code-based cryptography. In: WCC 2009, pp. 168–180 (2009), Citations in this document: §4

    Google Scholar 

  9. Buchmann, J., Ding, J. (eds.): PQCrypto 2008. LNCS, vol. 5299. Springer, Heidelberg (2008) See [5], [14]

    MATH  Google Scholar 

  10. Canteaut, A., Chabaud, F.: A new algorithm for finding minimum-weight words in a linear code: application to McEliece’s cryptosystem and to narrow-sense BCH codes of length 511. IEEE Transactions on Information Theory 44, 367–378 (1998), ftp://ftp.inria.fr/INRIA/tech-reports/RR/RR-2685.ps.gz , MR 98m:94043, Citations in this document: §4

    Article  MathSciNet  MATH  Google Scholar 

  11. Carleial, A.B., Hellman, M.E.: A note on Wyner’s wiretap channel. IEEE Transactions on Information Theory 23, 387–390 (1977), ISSN 0018-9448, Citations in this document: §4

    Google Scholar 

  12. Wolfmann, J., Cohen, G. (eds.): Coding Theory 1988. LNCS, vol. 388. Springer, Heidelberg (1989), See [24]

    MATH  Google Scholar 

  13. Dawson, E., Vaudenay, S. (eds.): Mycrypt 2005. LNCS, vol. 3715. Springer, Heidelberg (2005), See [3]

    MATH  Google Scholar 

  14. Finiasz, M.: Syndrome based collision resistant hashing. In: PQCrypto 2008 [9], pp. 137–147 (2008), Citations in this document: §1

    Google Scholar 

  15. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash functions. In: Proceedings of ECRYPT Hash Workshop 2007 (2007), http://www-roc.inria.fr/secret/Matthieu.Finiasz/research/2007/finiasz-gaborit-sendrier-ecrypt-hash-workshop07.pdf , Citations in this document: §1, §1

  16. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Asiacrypt 2009 [20] (2009), http://eprint.iacr.org/2009/414 , Citations in this document: §2, §4

  17. Günther, C.G. (ed.): EUROCRYPT 1988. LNCS, vol. 330. Springer, Heidelberg (1988), MR 90a:94002, See [18]

    Google Scholar 

  18. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Eurocrypt 1988 [17], pp. 275–280 (1988), http://dsns.csie.nctu.edu.tw/research/crypto/HTML/PDF/E88/275.PDF , MR 0994669, Citations in this document: §2, §4

  19. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Transactions on Information Theory 34, 1354–1359 (1988), MR 89k:94072, Citations in this document: §2

    Article  MathSciNet  MATH  Google Scholar 

  20. Matsui, M. (ed.): ASIACRYPT 2009. LNCS, vol. 5912. Springer, Heidelberg (2009), See [16]

    MATH  Google Scholar 

  21. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, 114–116 (1978), http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF , Citations in this document: §2

  22. Prange, E.: The use of information sets in decoding cyclic codes. IRE Transactions on Information Theory IT-8, S5–S9 (1962), Citations in this document: §2

    Google Scholar 

  23. Roy, B., Sendrier, N. (eds.): INDOCRYPT 2009. LNCS, vol. 5922. Springer, Heidelberg (2009), See [4]

    MATH  Google Scholar 

  24. Stern, J.: A method for finding codewords of small weight. In: [12], pp. 106–113 (1989), Citations in this document: §2, §4

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernstein, D.J., Lange, T., Peters, C., Schwabe, P. (2011). Faster 2-Regular Information-Set Decoding. In: Chee, Y.M., et al. Coding and Cryptology. IWCC 2011. Lecture Notes in Computer Science, vol 6639. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20901-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20901-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20900-0

  • Online ISBN: 978-3-642-20901-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics