Skip to main content

Viruses with Double-Stranded, Segmented RNA Genomes

  • Reference work entry

Abstract

The members of the families Reoviridae and Birnaviridae possess a double-stranded, segmented RNA genome. Similar molecular properties are found in plant viruses, such as partitiviruses. The genome of birnaviruses, which are not pathogenic for humans, has two genome segments. In contrast, the genomes of reoviruses encompass 9–12 RNA segments. The viruses have a worldwide distribution and cause, to some extent, severe diseases in humans and animals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Further Reading

  • Anderson EJ, Weber SG (2004) Rotavirus infection in adults. Lancet Infect Dis 4:91–99

    Article  PubMed  Google Scholar 

  • Aoki ST, Settembre EC, Trask SD, Greenberg HB, Harrison SC, Dormitzer PR (2009) Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324:1444–1447

    Article  PubMed  CAS  Google Scholar 

  • Ball JM, Mitchell DM, Gibbons TF, Parr RD (2005) Rotavirus NSP4: a multifunctional viral enterotoxin. Viral Immunol 18:27–40

    Article  PubMed  CAS  Google Scholar 

  • Barro M, Patton JT (2005) Rotavirus nonstructural protein 1 subverts innate immune response by inducing degradation of IFN regulatory factor 3. Proc Natl Acad Sci USA 102:4114–4119

    Article  PubMed  CAS  Google Scholar 

  • Becht H (1980) Infectious bursal disease virus. Curr Top Microbiol Immunol 90:107–121

    Article  PubMed  CAS  Google Scholar 

  • Birghan C, Mundt E, Gorbalenya A (2000) A non-canonical Lon proteinase deficient of the ATPase domain employs the Ser-Lys catalytic dyad to impose broad control over the life cycle of a double-stranded RNA virus. EMBO J 19:114–123

    Article  PubMed  CAS  Google Scholar 

  • Blutt SE, Conner ME (2007) Rotavirus: to the gut and beyond! Curr Opin Gastroenterol 23:39–43

    Article  PubMed  Google Scholar 

  • Brunet J-P, Jourdan N, Cotte-Lafitte J, Linxe C, Géniteau-Legendre M, Servin A, Quéro A-M (2000) Rotavirus infection induces cytoskeleton disorganization in human intestinal epithelial cells: implication of an increase in intracellular calcium concentration. J Virol 74:10801–10806

    Article  PubMed  CAS  Google Scholar 

  • Conner ME, Matson DO, Estes MK (1994) Rotavirus vaccines and vaccination potential. Curr Top Microbiol Immunol 185:285–337

    Article  PubMed  CAS  Google Scholar 

  • Cook N, Bridger J, Kendall K, Gomara MI, El-Attar L, Gray J (2004) The zoonotic potential of rotavirus. J Infect 48:289–302

    Article  PubMed  Google Scholar 

  • Coulibaly F, Chevalier C, Gutsche I, Pous J, Navaza J, Bressanelli S, Delmas B, Rey FA (2005) The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761–772

    Article  PubMed  CAS  Google Scholar 

  • Da Costa B, Soignier S, Chevalier C, Henry C, Thory C, Huet J-C, Delmas B (2003) Blotched snakehead virus is a new aquatic birnavirus that is slightly more related to avibirnavirus than to aquabirnavirus. J Virol 77:719–725

    Article  PubMed  Google Scholar 

  • Delmas O, Gardet A, Chwetzoff S, Breton M, Cohen J, Colard O, Sapin C, Trugnan G (2004) Different ways to reach the top of a cell. Analysis of rotavirus assembly and targeting in human intestinal cells reveals an original raft-dependent, Golgi-independent apical targeting pathway. Virology 327:157–161

    Article  PubMed  CAS  Google Scholar 

  • Dhama K, Chauhan RS, Mahendran M, Malik SV (2009) Rotavirus diarrhea in bovines and other domestic animals. Vet Res Commun 33:1–23

    Article  PubMed  CAS  Google Scholar 

  • Dobos P (1995) The molecular biology of infectious pancreatic necrosis virus (IPNV). Annu Rev Fish Dis 5:24–54

    Article  Google Scholar 

  • Fischer TK, Ashley D, Kerin T, Reynolds-Hedmann E, Gentsch J, Widdowson MA, Westerman L, Puhr N, Turcios RM, Glass RI (2005) Rotavirus antigenemia in patients with acute gastroenteritis. J Infect Dis 192:913–919

    Article  PubMed  Google Scholar 

  • Fuentes-Panama EM, Lopez S, Gorziglia M, Arias CF (1995) Mapping of the hemagglutination domain of rotaviruses. J Virol 69:2629–2632

    Google Scholar 

  • Gardet A, Breton M, Fontanges P, Trugnan G, Chwetzoff S (2006) Rotavirus spike protein VP4 binds to and remodels actin bundles of the epithelial brush border into actin bodies. J Virol 80:3947–3956

    Article  PubMed  CAS  Google Scholar 

  • Gentsch JR, Laird AR, Bielfelt B, Griffin DD, Banyai K, Ramachandran M, Jain V, Cunliffe NA, Nakagomi O, Kirkwood CD, Fischer TK, Parashar UD, Bresee JS, Jiang B, Glass RI (2005) Serotype diversity and reassortment between human and animal rotavirus strains: implications for rotavirus vaccine programs. J Infect Dis 192(Suppl 1):146–159

    Article  Google Scholar 

  • Glass RI, Parashar UD, Bresee JS, Turcios R, Fischer TK, Widdowson MA, Jiang B, Gentsch JR (2006) Rotavirus vaccines: current prospects and future challenges. Lancet 368:323–332

    Article  PubMed  CAS  Google Scholar 

  • Goldwater PN, Rowland K, Thesinger M, Abbott K, Grieve A, Palombo EA, Masendycz PJ, Wilkinson I, Bear J (2001) Rotavirus encephalopathy: pathogenesis reviewed. J Paediatr Child Health 37:206–209

    Article  PubMed  CAS  Google Scholar 

  • Granzow H, Brighan C, Mettenleiter TC, Beyer J, Köllner B, Mundt E (1997) A second form of infectious bursal disease virus associated tubules contains VP4. J Virol 71:8879–8885

    PubMed  CAS  Google Scholar 

  • Greenberg HB, Estes MK (2009) Rotaviruses: from pathogenesis to vaccination. Gastroenterology 136:1939–1951

    Article  PubMed  CAS  Google Scholar 

  • Hewish MJ, Takada Y, Coulson BS (2000) Integrins alpha2beta1 and alpha4beta1 can mediate SA11 rotavirus attachment and entry into cells. J Virol 74:228–236

    Article  PubMed  CAS  Google Scholar 

  • Hon CC, Lam TY, Drummond A, Rambaut A, Lee YF, Yip CW, Zeng F, Lam PY, Ng PT, Leung FC (2006) Phylogenetic analysis reveals a correlation between the expansion of very virulent infectious bursal disease virus and reassortment of its genome segment B. J Virol 80:8503–8509

    Article  PubMed  CAS  Google Scholar 

  • Jayaram H, Estes MK, Prasad BV (2004) Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Virus Res 101:67–81

    Article  PubMed  CAS  Google Scholar 

  • Joklik WK, Roner MR (1995) What reassorts when reovirus reassorts? J Biol Chem 270:4181–4184

    Article  PubMed  CAS  Google Scholar 

  • Labbe M, Baudoux P, Charpilienne A, Poncet D, Cohen J (1994) Identification of the nucleic acid binding domain of the rotavirus VP2 protein. J Gen Virol 75:3423–3430

    Article  PubMed  CAS  Google Scholar 

  • Lejal N, Da Costa B, Huet JC, Delmas B (2000) Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J Gen Virol 81:983–992

    PubMed  CAS  Google Scholar 

  • Mundt E, Beyer J, Müller H (1995) Identification of a novel viral protein in infectious bursal disease virus infected cells. J Gen Virol 76:437–443

    Article  PubMed  CAS  Google Scholar 

  • Nguyen TA, Khamrin P, Trinh QD, Phan TG, le Pham D, le Hoang P, Hoang KT, Yagyu F, Okitsu S, Ushijima H (2007) Sequence analysis of Vietnamese P[6] rotavirus strains suggests evidence of interspecies transmission. J Med Virol 79:1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Parr RD, Storey SM, Mitchell DM, McIntosh AL, Zhou M, Mir KD, Ball JM (2006) The rotavirus enterotoxin NSP4 directly interacts with the caveolar structural protein caveolin-1. J Virol 80:2842–2854

    Article  PubMed  CAS  Google Scholar 

  • Parra GI, Vidales G, Gomez JA, Fernandez FM, Parreño V, Bok K (2008) Phylogenetic analysis of porcine rotavirus in Argentina: increasing diversity of G4 strains and evidence of interspecies transmission. Vet Microbiol 126:243–250

    Article  PubMed  CAS  Google Scholar 

  • Patton JT, Spencer E (2000) Genome replication and packaging of segmented double-stranded RNA viruses. Virology 277:217–225

    Article  PubMed  CAS  Google Scholar 

  • Poncet D, Laurent S, Cohen J (1994) Four nucleotides are the minimal requirement for RNA recognition by rotavirus nonstructural protein NSP3. EMBO J 13:4165–4173

    PubMed  CAS  Google Scholar 

  • Purse BV, Brown HE, Harrup L, Mertens PP, Rogers DJ (2008) Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev Sci Tech 27:427–442

    PubMed  CAS  Google Scholar 

  • Ramig RF (2004) Pathogenesis of intestinal and systemic rotavirus infection. J Virol 78:10213–10220

    Article  PubMed  CAS  Google Scholar 

  • Roy P, Boyce M, Noad R (2009) Prospects for improved bluetongue vaccines. Nat Rev Microbiol 7:120–128

    Article  PubMed  CAS  Google Scholar 

  • Schuck P, Tarapolewara Z, McPhie P, Patton J (2001) Rotavirus nonstructural protein NSP2 self-assembles into octamers that undergo ligand-induced conformational changes. J Biol Chem 276:9679–9687

    Article  PubMed  CAS  Google Scholar 

  • Taraporewala ZF, Patton JT (2001) Identification and characterization of the helix-destabilizing activity of rotavirus nonstructural protein NSP2. J Virol 75:4519–4527

    Article  PubMed  CAS  Google Scholar 

  • Taraporewala ZF, Patton JT (2004) Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae. Virus Res 101:57–66

    Article  PubMed  CAS  Google Scholar 

  • van den Berg T (2000) Acute infectious bursal disease in poultry: a review. Avian Pathol 29:175–194

    Article  PubMed  CAS  Google Scholar 

  • Vesikari T (2008) Rotavirus vaccines. Scand J Infect Dis 40:691–695

    Article  PubMed  CAS  Google Scholar 

  • Yaeger M, Berriman JA, Baker TS, Bellamy AR (1994) Three-dimensional structure of the rotavirus haemagglutinin by cryo-electron microscopy and difference map analysis. EMBO J 13:1011–1018

    Google Scholar 

  • Zhang M, Zeng CQ-Y, Morris AP, Estes MK (2000) A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol 74:11663–11670

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Modrow .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Modrow, S., Falke, D., Truyen, U., Schätzl, H. (2013). Viruses with Double-Stranded, Segmented RNA Genomes. In: Molecular Virology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20718-1_17

Download citation

Publish with us

Policies and ethics