Skip to main content

Life histories, Ökologie und Verhalten

  • Chapter
Verhaltensbiologie

Part of the book series: Springer-Lehrbuch ((SLB))

  • 6655 Accesses

Zusammenfassung

Jedes Tier durchläuft einen Lebenszyklus: es wird geboren, wächst, pflanzt sich fort und stirbt. Die Details eines Lebenszyklus unterscheiden sich dabei stark zwischen Arten sowie teilweise zwischen Individuen derselben Art. Diese Variabilität wird durch verschiedene Life history-Strategien beschrieben mit denen Individuen versuchen, ihre Fitness zu optimieren. Innerartliche Variabilität in Merkmalen, die Life history-Strategien charakterisieren, reflektiert demnach individuelle Anpassungen. Weil manche Verhaltensweisen direkte Bezüge zu erfolgreichem Überleben und Fortpflanzen aufweisen, ist es daher im Rahmen einer ultimaten Analyse des Verhaltens (→ Kapitel 1.1) notwendig, bestimmte Verhaltensweisen und -muster im Kontext von Life history-Strategien zu betrachten. Außerdem erfordert es die Natur der Bestandteile von Strategien, dass sich Individuen entscheiden, was sie als nächstes tun. Life history-Strategien haben daher auch wichtige Konsequenzen für das Verhalten; oft in der Form, dass bestimmte Verhaltensweisen mehr oder weniger wahrscheinlich werden.

Ich möchte in diesem Kapitel die wichtigsten Life history-Merkmale näher beleuchten und dabei deren Verbindungen mit dem Verhalten der Tiere betonen. Dieser Ansatz ist notwendig, um zu verstehen, wie eng einzelne Verhaltensmerkmale im Lauf des Lebens eines Individuums mit anderen Aspekten der Physiologie, Anatomie und Ökologie eines Organismus verzahnt und mit diesen funktionell verknüpft sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Arnold KE, Owens IPF (1999) Cooperative breeding in birds: the role of ecology. Behav Ecol 10:465–471

    Article  Google Scholar 

  • Badyaev AV (2002) Growing apart: an ontogenetic perspective on the evolution of sexual size dimorphism. Trends Ecol Evol 17:369–378

    Article  Google Scholar 

  • Bielby J, Mace GM, Bininda-Emonds ORP, Cardillo M, Gittleman JL, Jones KE, Orme CDL, Purvis A (2007) The fast-slow continuum in mammalian life history: an empirical reevaluation. Am Nat 169:748–757

    Article  PubMed  CAS  Google Scholar 

  • Biro PA, Abrahams MV, Post JR, Parkinson EA (2004) Predators select against high growth rates and risk-taking behaviour in domestic trout populations. Proc R Soc Lond B 271:2233–2237

    Article  Google Scholar 

  • Blomberg SP, Garland T Jr (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  • Blomquist GE (2009a) Environmental and genetic causes of maturational differences among rhesus macaque matrilines. Behav Ecol Sociobiol 63:1345–1352

    Article  Google Scholar 

  • Blomquist GE (2009b) Trade-off between age of first reproduction and survival in a female primate. Biol Lett 5:339–342

    Article  Google Scholar 

  • Bonduriansky R, Brassil CE (2002) Rapid and costly ageing in wild male flies. Nature 420:377

    Article  PubMed  CAS  Google Scholar 

  • Dammann P, Burda H (2006) Sexual activity and reproduction delay ageing in a mammal. Curr Biol 16:R117–118

    Article  PubMed  CAS  Google Scholar 

  • Derrickson EM (1992) Comparative reproductive strategies of altricial and precocial eutherian mammals. Funct Ecol 6:57–65

    Article  Google Scholar 

  • Dunbar RIM (1998) The social brain hypothesis. Evol Anthropol 6:178–190

    Article  Google Scholar 

  • Einum S, Fleming IA (2000) Highly fecund mothers sacrifice offspring survival to maximize fitness. Nature 405:565–567

    Article  PubMed  CAS  Google Scholar 

  • Ergon T, Lambin X, Stenseth NC (2001) Life-history traits of voles in a fluctuating population respond to the immediate environment. Nature 411:1043–1045

    Article  PubMed  CAS  Google Scholar 

  • Festa-Bianchet M, Coltman DW, Turelli L, Jorgenson JT (2004) Relative allocation to horn and body growth in bighorn rams varies with resource availability. Behav Ecol 15:305–312

    Article  Google Scholar 

  • Gaillard J-M, Pontier D, Allaine D, Loison A, Herve J-C, Heizmann A (1997) Variation in growth form and precocity at birth in eutherian mammals. Proc R Soc Lond B 264:859–868

    Article  CAS  Google Scholar 

  • Ghalambor CK, Martin TE (2001) Fecundity-survival trade-offs and parental risktaking in birds. Science 292:494–497

    Article  PubMed  CAS  Google Scholar 

  • Godfray HCJ (1995) Evolutionary theory of parent-offspring conflict. Nature 376:133–138

    Article  PubMed  CAS  Google Scholar 

  • Grant PR, Grant BR (2011) Causes of lifetime fitness of Darwin's finches in a fluctuating environment. Proc Natl Acad Sci USA 108:674–679

    Article  PubMed  CAS  Google Scholar 

  • Griebeler EM, Böhning-Gaese K (2004) Evolution of clutch size along latitudinal gradients: revisiting Ashmole’s hypothesis. Evol Ecol Res 6:679–694

    Google Scholar 

  • Hendry AP, Morbey YE, Berg OK, Wenburg JK (2004) Adaptive variation in senescence: reproductive lifespan in a wild salmon population. Proc R Soc Lond B 271:259–266

    Article  Google Scholar 

  • Jouventin P, Dobson FS (2002) Why breed every other year? The case of albatrosses. Proc R Soc Lond B 269:1955–1961

    Article  Google Scholar 

  • Kappeler PM, Pereira ME, van Schaik CP (2003) Primate life histories and socioecology. In: Kappeler PM, Pereira ME (eds) Primate Life Histories and Socioecology. Univ of Chicago Press, Chicago, pp 1–23

    Google Scholar 

  • Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389:958–960

    Article  CAS  Google Scholar 

  • Kemp DJ (2002) Sexual selection constrained by life history in a butterfly. Proc R Soc Lond B 269:1341–1345

    Article  Google Scholar 

  • Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238

    Article  PubMed  CAS  Google Scholar 

  • Lack D (1947) The significance of clutch size. Ibis 89:302–352

    Article  Google Scholar 

  • Legge S (2000) Siblicide in the cooperatively breeding laughing kookaburra (Dacelo novaeguineae). Behav Ecol Sociobiol 48:293–302

    Article  Google Scholar 

  • Leimar O (2001) Evolutionary change and Darwinian demons. Selection 2:65–72

    Article  Google Scholar 

  • Martin JGA, Festa-Bianchet M (2010) Bighorn ewes transfer the costs of reproduction to their lambs. Am Nat 176:414–423

    Article  PubMed  Google Scholar 

  • Mock DW, Parker GA (1998) The Evolution of Sibling Rivalry. Oxford Univ Press, Oxford

    Google Scholar 

  • Nur N (1984a) The consequences of brood size for breeding blue tits. 1. Adult survival, weight change and the cost of reproduction. J Anim Ecol 53:479–496

    Article  Google Scholar 

  • Nur N (1984b) The consequences of brood size for breeding blue tits. 2. Nestling weight, offspring survival and optimal brood size. J Anim Ecol 53:497–517

    Article  Google Scholar 

  • Nussey DH, Kruuk LEB, Donald A, Fowlie M, Clutton-Brock TH (2006) The rate of senescence in maternal performance increases with early-life fecundity in red deer. Ecol Lett 9:1342–1350

    Article  PubMed  Google Scholar 

  • Postma E, van Noordwijk AJ (2005) Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature 433:65–68

    Article  PubMed  CAS  Google Scholar 

  • Promislow DEL, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool Lond 220:417–437

    Article  Google Scholar 

  • Reznick DN (1985) Costs of reproduction: an evaluation of the empirical evidence. Oikos 44:257–267

    Article  Google Scholar 

  • Reznick DN, Bryga H, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359

    Article  Google Scholar 

  • Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099

    Article  PubMed  CAS  Google Scholar 

  • Ricklefs RE, Wikelski M (2002) The physiology/life history nexus. Trends Ecol Evol 17:462–468

    Article  Google Scholar 

  • Shine R (2003) Reproductive strategies in snakes. Proc R Soc Lond B 270:995–1004

    Article  Google Scholar 

  • Smith CC, Fretwell SD (1974) The optimal balance between size and number of offspring. Am Nat 108:499–506

    Article  Google Scholar 

  • Stearns SC (1976) Life-history tactics: a review of the ideas. Q Rev Biol 51:3–47

    Article  PubMed  CAS  Google Scholar 

  • Stearns SC (1989a) Trade-offs in life-history evolution. Func Ecol 3:259–268

    Article  Google Scholar 

  • Stearns SC (1989b) The evolutionary significance of phenotypic plasticity : phenotypic sources of variation among organisms can be described by developmental switches and reaction norms. BioScience 39:436–445

    Article  Google Scholar 

  • Stearns SC, Ackermann M, Doebeli M, Kaiser M (2000) Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci USA 97:3309–3313

    Article  PubMed  CAS  Google Scholar 

  • Taborsky M, Brockmann HJ (2010) Alternative reproductive tactics and life history phenotypes. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 537–586

    Chapter  Google Scholar 

  • Temrin H, Tullberg BS (1995) A phylogenetic analysis of the evolution of avian mating systems in relation to altricial and precocial young. Behav Ecol 6:296–307

    Article  Google Scholar 

  • Thomas RJ, Cuthill IC, Goldsmith AR, Cosgrove DF, Lidgate HC, Burdett Proctor SL (2003) The trade-off between singing and mass gain in a daytimesinging bird, the European robin. Behaviour 140:387–404

    Article  Google Scholar 

  • Tinbergen JM, Sanz JJ (2004) Strong evidence for selection for larger brood size in a great tit population. Behav Ecol 15:525–533

    Article  Google Scholar 

  • van Schaik CP (2010) Social learning and culture in animals. In: Kappeler PM (ed) Animal Behaviour: Evolution and Mechanisms. Springer, Heidelberg, pp 623–653

    Chapter  Google Scholar 

  • Visser ME, Lessells CM (2001) The costs of egg production and incubation in great tits (Parus major). Proc R Soc Lond B 268:1271–1277

    Article  CAS  Google Scholar 

  • Williams TD (2001) Experimental manipulation of female reproduction reveals an interspecific egg size-clutch size trade-off. Proc R Soc Lond B 268:423–428

    Article  CAS  Google Scholar 

  • Wolf M, van Doorn GS, Leimar O, Weissing FJ (2007) Life-history trade-offs favour the evolution of animal personalities. Nature 447:581–584

    Article  PubMed  CAS  Google Scholar 

  • Zera AJ, Harshman LG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–126

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kappeler, P. (2012). Life histories, Ökologie und Verhalten. In: Verhaltensbiologie. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20653-5_2

Download citation

Publish with us

Policies and ethics