Skip to main content

Immunoassays and Imaging Based on Surface-Enhanced Raman Spectroscopy

  • Chapter
  • 5642 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ferraro JR, Nakamoto K, Brown CW (eds) (2003) Introductory Raman spectroscopy, 2nd edn. Academic Press, San Diego

    Google Scholar 

  2. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544

    Article  CAS  Google Scholar 

  3. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  4. Jun BH, Kim JH, Park H, Kim JS, Yu KN, Lee SM, Choi H, Kwak SY, Kim YK, Jeong DH, Cho MH, Lee YS (2007) Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J Comb Chem 9:237–244

    Article  CAS  Google Scholar 

  5. Wagnieres GA, Star WM, Wilson BC (1998) In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem Photobiol 68:603–632

    CAS  Google Scholar 

  6. Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    Article  CAS  Google Scholar 

  7. Blomfiel J, Farrar JF (1969) Fluorescent properties of maturing arterial elastin. Cardiovasc Res 3:161–170

    Article  Google Scholar 

  8. Fujimoto D, Akiba KY, Nakamura N (1977) Isolation and characterization of a fluorescent material in bovine achilles-tendon collagen. Biochem Bioph Res Co 76:1124–1129

    Article  CAS  Google Scholar 

  9. Long DA (ed) (1977) Raman spectroscopy. McGraw-Hill, London

    Google Scholar 

  10. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari R, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670

    Article  CAS  Google Scholar 

  11. Nie SM, Emery SR (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275:1102–1106

    Article  CAS  Google Scholar 

  12. Bosnick KA, Jiang J, Brus LE (2002) Fluctuations and local symmetry in single-molecule rhodamine 6 G Raman scattering on silver nanocrystal aggregates. J Phys Chem B 106:8096–8099

    Article  CAS  Google Scholar 

  13. Xu H, Bjerneld EJ, Käll M, Börjesson L (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys Rev Lett 83:4357–4360

    Article  CAS  Google Scholar 

  14. Albrecht MG, Creighton JA (1977) Anomalously intense Raman-spectra of pyridine at a silver electrode. J Am Chem Soc 99:5215–5217

    Article  CAS  Google Scholar 

  15. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman-scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Farad T 2 75:790–798

    Article  CAS  Google Scholar 

  16. Fleischm M, Hendra PJ, McQuilla AJ (1974) Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26:163–166

    Article  Google Scholar 

  17. Jeanmaire DL, Van Duyne RP (1977) Surface Raman spectroelectrochemistry 1. Heterocyclic, aromatic, and aliphatic-amines adsorbed on anodized silver electrode. J Electroanal Chem 84:1–20

    Article  CAS  Google Scholar 

  18. Moskovits M (2005) Surface-enhanced Raman spectroscopy: a brief retrospective. J Raman Spectrosc 36:485–496

    Article  CAS  Google Scholar 

  19. Xu H, Aizpurua J, Käll M, Apell P (2000) Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 62:4318–4324

    Article  CAS  Google Scholar 

  20. Kottmann JP, Martin OJF (2001) Retardation-induced plasmon resonances in coupled nanoparticles. Opt Lett 26:1096–1098

    Article  CAS  Google Scholar 

  21. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826

    Article  CAS  Google Scholar 

  22. Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250

    Article  CAS  Google Scholar 

  23. Vo-Dinh T (1998) Surface-enhanced Raman spectroscopy using metallic nanostructures. Trac-Trend Anal Chem 17:557–582

    Article  CAS  Google Scholar 

  24. Haynes CL, Van Duyne RP (2003) Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J Phys Chem B 107:7426–7433

    Article  CAS  Google Scholar 

  25. McFarland AD, Young MA, Dieringer JA, Van Duyne RP (2005) Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B 109:11279–11285

    Article  CAS  Google Scholar 

  26. Dieringer JA, McFarland AD, Shah NC, Stuart DA, Whitney AV, Yonzon CR, Young MA, Zhang XY, Van Duyne RP (2006) Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss 132:9–26

    Article  CAS  Google Scholar 

  27. Chang RK, Furtak TE (eds) (1982) Surface-enhanced raman scattering. Plenum, New York

    Google Scholar 

  28. Banholzer MJ, Millstone JE, Qin LD, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    Article  CAS  Google Scholar 

  29. Okamoto H, Imura K (2008) Near-field optical imaging of nanoscale optical fields and plasmon waves. Jpn J Appl Phys 47:6055–6062

    Article  CAS  Google Scholar 

  30. Haynes CL, McFarland AD, Zhao LL, Van Duyne RP, Schatz GC, Gunnarsson L, Prikulis J, Kasemo B, Käll M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107:7337–7342

    Article  CAS  Google Scholar 

  31. Jeong DH, Zhang YX, Moskovits M (2004) Polarized surface enhanced Raman scattering from aligned silver nanowire rafts. J Phys Chem B 108:12724–12728

    Article  CAS  Google Scholar 

  32. Lee SJ, Morrill AR, Moskovits M (2006) Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc 128:2200–2201

    Article  CAS  Google Scholar 

  33. Kim JH, Kim JS, Choi H, Lee SM, Jun BH, Yu KN, Kuk E, Kim YK, Jeong DH, Cho MH, Lee YS (2006) Nanoparticle probes with surface enhanced Raman spectroscopic tags for cellular cancer targeting. Anal Chem 78:6967–6973

    Article  CAS  Google Scholar 

  34. Su X, Zhang J, Sun L, Koo TW, Chan S, Sundararajan N, Yamakawa M, Berlin AA (2005) Composite organic-inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett 5:49–54

    Article  CAS  Google Scholar 

  35. Chon H, Lee S, Son SW, Oh CH, Choo J (2009) Highly sensitive immunoassay of lung cancer marker carcinoembryonic antigen using surface-enhanced Raman scattering of hallow gold nanospheres. Anal Chem 81:3029–3034

    Article  CAS  Google Scholar 

  36. Lee S, Chon H, Lee M, Choo J, Shin SY, Lee YH, Rhyu IJ, Son SW, Oh CH (2009) Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres. Biosens Bioelectron 24:2260–2263

    Article  CAS  Google Scholar 

  37. Sanles-Sobrido M, Exner W, Rodriguez-Lorenzo L, Rodriguez-Gonzalez B, Correa-Duarte MA, Alvarez-Puebla RA, Liz-Marzan LM (2009) Design of SERS-encoded, submicron, hollow particles through confined growth of encapsulated metal nanoparticles. J Am Chem Soc 131:2699–2705

    Article  CAS  Google Scholar 

  38. Nikoobakht B, Wang JP, El-Sayed MA (2002) Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition. Chem Phys Lett 366:17–23

    Article  CAS  Google Scholar 

  39. Wang YL, Lee K, Irudayaraj J (2010) SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem Commun 46:613–615

    Article  CAS  Google Scholar 

  40. Guo HY, Lu LH, Wu C, Pan JG, Hu JW (2009) SERS tagged gold nanorod probes for immunoassay application. Acta Chim Sin 67:1603–1608

    CAS  Google Scholar 

  41. Kwon K, Lee KY, Lee YW, Kim M, Heo J, Ahn SJ, Han SW (2007) Controlled synthesis of icosahedral gold nanoparticles and their surface-enhanced Raman scattering property. J Phys Chem C 111:1161–1165

    Article  CAS  Google Scholar 

  42. McLellan JM, Li ZY, Siekkinen AR, Xia YN (2007) The SERS activity of a supported ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett 7:1013–1017

    Article  CAS  Google Scholar 

  43. Xie JP, Zhang QB, Lee JY, Wang DIC (2008) The synthesis of SERS-active gold nanoflower tags for in vivo applications. ACS Nano 2:2473–2480

    Article  CAS  Google Scholar 

  44. Khoury CG, Vo-Dinh T (2008) Gold nanostars for surface-enhanced Raman scattering: synthesis, characterization and optimization. J Phys Chem C 112:18849–18859

    CAS  Google Scholar 

  45. Li WY, Camargo PHC, Au L, Zhang Q, Rycenga M, Xia YN (2010) Etching and dimerization: a simple and versatile route to dimers of silver nanospheres with a range of sizes. Angew Chem-Int Edit 49:164–168

    Article  CAS  Google Scholar 

  46. Qin L, Banholzer MJ, Millstone JE, Mirkin CA (2007) Nanodisk codes. Nano Lett 7:3849–3853

    Article  CAS  Google Scholar 

  47. McCabe AF, Eliasson C, Prasath RA, Hernandez-Santana A, Stevenson L, Apple I, Cormack PAG, Graham D, Smith WE, Corish P, Lipscomb SJ, Holland ER, Prince PD (2006) SERRS labelled beads for multiplex detection. Faraday Discuss 132:303–308

    Article  CAS  Google Scholar 

  48. Wang CG, Chen Y, Wang TT, Ma ZF, Su ZM (2008) Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv Funct Mater 18:355–361

    Article  CAS  Google Scholar 

  49. Lu Y, Liu GL, Kim J, Mejia YX, Lee LP (2005) Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett 5:119–124

    Article  CAS  Google Scholar 

  50. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395

    Article  CAS  Google Scholar 

  51. Felidj N, Aubard J, Levi G, Krenn JR, Salerno M, Schider G, Lamprecht B, Leitner A, Aussenegg FR (2002) Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering. Phys Rev B 65:075419(1–9)

    Google Scholar 

  52. Hirsch LR, Gobin AM, Lowery AR, Tam F, Drezek RA, Halas NJ, West JL (2006) Metal nanoshells. Ann Biomed Eng 34:15–22

    Article  Google Scholar 

  53. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248

    Article  CAS  Google Scholar 

  54. Wiley BJ, Chen YC, McLellan JM, Xiong YJ, Li ZY, Ginger D, Xia YN (2007) Synthesis and optical properties of silver nanobars and nanorice. Nano Lett 7:1032–1036

    Article  CAS  Google Scholar 

  55. Green M, Liu FM, Cohen L, Kollensperger P, Cass T (2006) SERS platforms for high density DNA arrays. Faraday Discuss 132:269–280

    Article  CAS  Google Scholar 

  56. Bell SEJ, Sirimuthu NMS (2006) Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides. J Am Chem Soc 128:15580–15581

    Article  CAS  Google Scholar 

  57. Ingram A, Stokes RJ, Redden J, Gibson K, Moore B, Faulds K, Graham D (2007) 8-hydroxyquinolinyl azo dyes: a class of surface-enhanced resonance Raman scattering-based probes for ultrasensitive monitoring of enzymatic activity. Anal Chem 79:8578–8583

    Article  CAS  Google Scholar 

  58. Dijkstra RJ, Scheenen W, Dam N, Roubos EW, ter Meulen JJ (2007) Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. J Neurosci Meth 159:43–50

    Article  CAS  Google Scholar 

  59. Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231

    Article  CAS  Google Scholar 

  60. Rohr TE, Cotton T, Fan N, Tarcha PJ (1989) Immunoassay employing surface-enhanced Raman-spectroscopy. Anal Biochem 182:388–398

    Article  CAS  Google Scholar 

  61. Dou X, Takama T, Yamaguchi Y, Yamamoto H, Ozaki Y (1997) Enzyme immunoassay utilizing surface-enhanced Raman scattering of the enzyme reaction product. Anal Chem 69:1492–1495

    Article  CAS  Google Scholar 

  62. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011

    Article  CAS  Google Scholar 

  63. Driskell JD, Lipert RJ, Porter MD (2006) Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering. J Phys Chem B 110:17444–17451

    Article  CAS  Google Scholar 

  64. Hu QY, Tay LL, Noestheden M, Pezacki JP (2007) Mammalian cell surface imaging with nitrile-functionalized nanoprobes: biophysical characterization of aggregation and polarization anisotropy in SERS imaging. J Am Chem Soc 129:14–15

    Article  CAS  Google Scholar 

  65. Willets KA (2009) Surface-enhanced Raman scattering (SERS) for probing internal cellular structure and dynamics. Anal Bioanal Chem 394:85–94

    Article  CAS  Google Scholar 

  66. Chourpa I, Lei FH, Dubois P, Manfait M, Sockalingum GD (2008) Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem Soc Rev 37:993–1000

    Article  CAS  Google Scholar 

  67. Schlücker S (2009) SERS microscopy: nanoparticle probes and biomedical applications. ChemPhysChem 10:1344–1354

    Article  Google Scholar 

  68. Lutz BR, Dentinger CE, Nguyen LN, Sun L, Zhang JW, Allen AN, Chan S, Knudsen BS (2008) Spectral analysis of multiplex Raman probe signatures. Acs Nano 2:2306–2314

    Article  CAS  Google Scholar 

  69. Park H, Lee S, Chen L, Lee EK, Shin SY, Lee YH, Son SW, Oh CH, Song JM, Kang SH, Choo J (2009) SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. Phys Chem Chem Phys 11:7444–7449

    Article  CAS  Google Scholar 

  70. Sun L, Sung KB, Dentinger C, Lutz B, Nguyen L, Zhang JW, Qin HY, Yamakawa M, Cao MQ, Lu Y, Chmura AJ, Zhu J, Su X, Berlin AA, Chan S, Knudsen B (2007) Composite organic-inorganic nanoparticles as Raman labels for tissue analysis. Nano Lett 7:351–356

    Article  CAS  Google Scholar 

  71. Woo MA, Lee SM, Kim G, Baek J, Noh MS, Kim JE, Park SJ, Minai-Tehrani A, Park SC, Seo YT, Kim YK, Lee YS, Jeong DH, Cho MH (2009) Multiplex immunoassay using fluorescent-surface enhanced Raman spectroscopic dots for the detection of bronchioalveolar stem cells in murine lung. Anal Chem 81:1008–1015

    Article  CAS  Google Scholar 

  72. Yu KN, Lee SM, Han JY, Park H, Woo MA, Noh MS, Hwang SK, Kwon JT, Jin H, Kim YK, Hergenrother PJ, Jeong DH, Lee YS, Cho MH (2007) Multiplex targeting, tracking, and imaging of apoptosis by fluorescent surface enhanced raman spectroscopic dots. Bioconjugate Chem 18:1155–1162

    Article  CAS  Google Scholar 

  73. Jun BH, Noh MS, Kim G, Kang H, Kim JH, Chung WJ, Kim MS, Kim YK, Cho MH, Jeong DH, Lee YS (2009) Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Anal Biochem 391:24–30

    Article  CAS  Google Scholar 

  74. Jun BH, Noh MS, Kim J, Kim G, Kang H, Kim MS, Seo YT, Baek J, Kim JH, Park J, Kim S, Kim YK, Hyeon T, Cho MH, Jeong DH, Lee YS (2010) Multifunctional silver-embedded magnetic nanoparticles as SERS nanoprobes and their applications. Small 6:119–125

    Article  CAS  Google Scholar 

  75. Noh MS, Jun BH, Kim S, Kang H, Woo MA, Minai-Tehrani A, Kim JE, Kim J, Park J, Lim HT, Park SC, Hyeon T, Kim YK, Jeong DH, Lee YS, Cho MH (2009) Magnetic surface-enhanced Raman spectroscopic (M-SERS) dots for the identification of bronchioalveolar stem cells in normal and lung cancer mice. Biomaterials 30:3915–3925

    Article  CAS  Google Scholar 

  76. Rusmini F, Zhong ZY, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8:1775–1789

    Article  CAS  Google Scholar 

  77. Sun L, Yu CX, Irudayaraj J (2007) Surface-enhanced raman scattering based nonfluorescent probe for multiplex DNA detection. Anal Chem 79:3981–3988

    Article  CAS  Google Scholar 

  78. Qian XM, Zhou X, Nie SM (2008) Surface-enhanced raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. J Am Chem Soc 130:14934–14935

    Article  Google Scholar 

  79. McKenzie F, Faulds K, Graham D (2007) Sequence-specific DNA detection using high-affinity. LNA-functionalized gold nanoparticles. Small 3:1866–1868

    Article  CAS  Google Scholar 

  80. Liu XJ, Knauer M, Ivleva NP, Niessner R, Haisch C (2010) Synthesis of core-shell surface-enhanced Raman tags for bioimaging. Anal Chem 82:441–446

    Article  CAS  Google Scholar 

  81. Grubisha DS, Lipert RJ, Park HY, Driskell J, Porter MD (2003) Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Anal Chem 75:5936–5943

    Article  CAS  Google Scholar 

  82. Lyandres O, Shah NC, Yonzon CR, Walsh JT, Glucksberg MR, Van Duyne RP (2005) Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal Chem 77:6134–6139

    Article  CAS  Google Scholar 

  83. Lee S, Kim S, Choo J, Shin SY, Lee YH, Choi HY, Ha SH, Kang KH, Oh CH (2007) Biological imaging of HEK293 cells expressing PLC gamma 1 using surface-enhanced Raman microscopy. Anal Chem 79:916–922

    Article  CAS  Google Scholar 

  84. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    Article  CAS  Google Scholar 

  85. Lim DK, Jeon KS, Kim HM, Nam JM, Suh YD (2010) Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 9:60–67

    Article  CAS  Google Scholar 

  86. Ni J, Lipert RJ, Dawson GB, Porter MD (1999) Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem 71:4903–4908

    Article  CAS  Google Scholar 

  87. Mulvaney SP, Musick MD, Keating CD, Natan MJ (2003) Glass-coated, analyte-tagged nanoparticles: a new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 19:4784–4790

    Article  CAS  Google Scholar 

  88. Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90

    Article  CAS  Google Scholar 

  89. Kaufmann S, Tanaka M (2003) Cell adhesion onto highly curved surfaces: one-step immobilization of human erythrocyte membranes on silica beads. Chem Phys Chem 4:699–704

    Article  CAS  Google Scholar 

  90. Küstner B, Gellner M, Schutz M, Schöppler F, Marx A, Ströbel P, Adam P, Schmuck C, Schlücker S (2009) SERS labels for red laser excitation: silica-encapsulated SAMs on tunable gold/silver nanoshells. Angew Chem-Int Ed 48:1950–1953

    Article  Google Scholar 

  91. Wabuyele MB, Yan F, Griffin GD, Vo-Dinh T (2005) Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells. Rev Sci Instrum 76:063710(1–7)

    Article  Google Scholar 

  92. Keren S, Zavaleta C, Cheng Z, de la Zerda A, Gheysens O, Gambhir SS (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 105:5844–5849

    Article  CAS  Google Scholar 

  93. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, Natan MJ, Gambhir SS (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci USA 106:13511–13516

    Article  CAS  Google Scholar 

  94. Kennedy DC, Duguay DR, Tay LL, Richeson DS, Pezacki JP (2009) SERS detection and boron delivery to cancer cells using carborane labelled nanoparticles. Chem Commun 6750–6752

    Article  Google Scholar 

  95. von Maltzahn G, Centrone A, Park JH, Ramanathan R, Sailor MJ, Hatton TA, Bhatia SN (2009) SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating. Adv Mater 21:3175–3180

    Article  Google Scholar 

  96. Gong JL, Liang Y, Huang Y, Chen JW, Jiang JH, Shen GL, Yu RQ (2007) Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens Bioelectron 22:1501–1507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeong, D.H., Kim, G., Lee, YS., Jun, BH. (2012). Immunoassays and Imaging Based on Surface-Enhanced Raman Spectroscopy. In: Kumar, C.S.S.R. (eds) Raman Spectroscopy for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20620-7_11

Download citation

Publish with us

Policies and ethics