Skip to main content

Systems with Higher-order Modulation

  • Chapter
  • First Online:
  • 3141 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 161))

Abstract

The chapter covers concepts, systems aspects, and key components for higher-order modulation. The introductory section presents relevant variants of higher-order modulation formats and includes coherent detection and coherent optical orthogonal frequency-division multiplexing as well. The next section is devoted to system configurations with particular emphasis on transmitter structures and receiver concepts, whereas the subsequent chapter focuses on key components. Included are LiNbO3-based quadrature modulators, integrated coherent receivers, in particular 90° hybrids, ranging from new concepts to proven implementations. A treatment of integrated balanced four-branch receivers ranges from theoretical analysis to the presentation of commercially available devices. The chapter concludes with a discussion of system trends and expected future developments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Rohde, C. Caspar, N. Heimes, M. Konitzer, E.-J. Bachus, N. Hanik, Robustness of DPSK direct detection transmission format in standard fiber WDM systems. Electron. Lett. 36, 1483–1484 (2000)

    Article  Google Scholar 

  2. J.M. Kahn, K.P Ho, Spectral efficiency limits and modulation/detection techniques for DWDM systems. IEEE J. Sel. Top. Quantum Electron. 10, 259–272 (2004)

    Article  Google Scholar 

  3. P.W. Hooijmans, Coherent Optical System Design (Wiley, Chichester, 1994)

    Google Scholar 

  4. L.G. Kazovsky, R. Welter, A.F. Elrefaie, W. Sessa, Wide-linewidth phase diversity homodyne receivers. J. Lightw. Technol. 6, 1527–1536 (1988)

    Article  ADS  Google Scholar 

  5. S. Norimatsu, K. Iwashita, K. Noguchi, An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes. IEEE Photon. Technol. Lett. 4, 765–767 (1992)

    Article  ADS  Google Scholar 

  6. O.K. Tonguz, R.E. Wagner, Equivalence between Preamplified Direct Detection and Heterodyne Receivers. IEEE Photon. Technol. Lett. 3, 835–837 (1991)

    Article  ADS  Google Scholar 

  7. J.H. Winters, Equalization in coherent lightwave systems using a fractionally spaced equalizer. J. Lightw. Technol. 8, 1487–1491 (1990)

    Article  ADS  Google Scholar 

  8. B. Spinnler, P.M. Krummrich, E.-D. Schmidt, Chromatic dispersion tolerance of coherent optical communication systems with electrical equalization, Opt. Fiber Commun. Conf. (OFC'06), Techn. Digest (Anaheim, CA, USA, 2006), paper OWB2

    Google Scholar 

  9. L.G. Kazovsky, G. Kalogerakis, W.T. Shaw, Homodyne phase-shift-keying systems: past, challenges and future opportunities. J. Lightw. Technol. 24, 4876–4884 (2006)

    Article  ADS  Google Scholar 

  10. T. Pfau, S. Hoffmann, R. Peveling, S. Bhandare, S.K. Ibrahim, O. Adamczyk, M. Porrmann, R. Noe, Y. Achiam, First real-time data recovery for synchronous QPSK transmission with standard DFB lasers. IEEE Photon. Technol. Lett. 18, 1907–1909 (2006)

    Article  ADS  Google Scholar 

  11. S. Walklin, J. Conradi, Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems. J. Lightw. Technol. 17, 2235–2248 (1999)

    Article  ADS  Google Scholar 

  12. J. Zhao, L. Huo, C. Chan, L. Chen, C. Lin, Analytical investigation of optimization, performance bound, and chromatic dispersion tolerance of 4-amplitude-shifted-keying format, Opt. Fiber Commun. Conf. (OFC'06), Techn. Digest (Anaheim, CA, USA, 2006), paper JThB15

    Google Scholar 

  13. C. Wree, J. Leibrich, W. Rosenkranz, Differential quadrature phase-shift keying for cost-effective doubling of the capacity in existing WDM systems, Proc. 4th ITG Conf. Photonic Networks, Leipzig, Germany (2003), pp. 161–168

    Google Scholar 

  14. M. Ohm, Optical 8-DPSK and receiver with direct detection and multilevel electrical signals, IEEE/LEOS Workshop on Advanced Modulation Formats, San Francisco, USA, CA (2004)

    Google Scholar 

  15. H. Yoon, D. Lee, N. Park, Performance comparison of optical 8-ary differential phase-shift keying systems with different electrical decision schemes. Opt. Express 13, 371–376 (2005)

    Article  ADS  Google Scholar 

  16. M. Serbay, C. Wree, W. Rosenkranz, Experimental investigation of RZ-8DPSK at 3 ⨉ 10.7 Gb/s, 18th Annual Meeting of the IEEE Lasers & Electro-Optics Society, Sydney (2005), paper WE3

    Google Scholar 

  17. S. Tsukamoto, K. Katoh, K. Kikuchi, Coherent demodulation of optical 8-phase shift-keying signals using homodyne detection and digital signal processing, Opt. Fiber Commun. Conf. (OFC'06), Techn. Digest (Anaheim, CA, USA, 2006), paper OThR5

    Google Scholar 

  18. M. Seimetz, L. Molle, D.-D. Gross, B. Auth, R. Freund, Coherent RZ-8PSK transmission at 30 Gbit/s over 1200 km employing homodyne detection with digital carrier phase estimation, Proc. 33rd Europ. Conf. Opt. Commun. (ECOC'07), Berlin, Germany (2007), paper 8.3.4

    Google Scholar 

  19. R. Freund, D.-D. Groß, M. Seimetz, L. Molle, C. Caspar, 30 Gbit/s RZ-8-PSK transmission over 2800 km standard single mode fiber without inline dispersion compensation, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OMI5

    Google Scholar 

  20. X. Zhou, J. Yu, D. Qian, T. Wang, G. Zhang, P. Magil, 8 ⨉ 114 Gb/s, 25-GHz-spaced, PolMux-RZ-8PSK transmission over 640 km of SSMF employing digital coherent detection and EDFA-only amplification, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper PDP1

    Google Scholar 

  21. J. Yu, X. Zhou, M.-F. Huang, Y. Shao, D. Qian, T. Wang, M. Cvijetic, P. Magill, L. Nelson, M. Birk, S. Ten, H.B. Matthew, S.K. Mishra, 17 Tb/s (161 ⨉ 114 Gb/s) PolMux-RZ-8PSK transmission over 662 km of ultra-low loss fiber using C-band EDFA amplification and digital coherent detection, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Th.3.E.2

    Google Scholar 

  22. M. Seimetz, M. Noelle, E. Patzak, Optical systems with high-order DPSK and star QAM modulation based on interferometric direct detection. J. Lightw. Technol. 25, 1515–1530 (2007)

    Article  ADS  Google Scholar 

  23. M. Seimetz, Optical fiber transmission systems with high-order phase and quadrature amplitude modulation, PhD thesis, Technical University of Berlin, Germany (2008)

    Google Scholar 

  24. C.R. Cahn, Combined digital phase and amplitude modulation communication system. IRE Trans. Commun. Syst. 8, 150–155 (1960)

    Article  Google Scholar 

  25. J.C. Hancock, R.W. Lucky, Performance of combined amplitude and phase modulated communication system, IRE Trans. Commun. Syst. 8, 232–237 (1960)

    Article  Google Scholar 

  26. M. Ohm, J. Speidel, Receiver sensitivity, chromatic dispersion tolerance and optimal receiver bandwidths for 40 Gbit/s 8-level optical ASK-DQPSK and optical 8-DPSK, Proc. 6th Conf. Photonic Networks, Leipzig, Germany (2005), pp. 211–217

    Google Scholar 

  27. K. Sekine, N. Kikuchi, S. Sasaki, S. Hayase, C. Hasegawa, T. Sugawara, Proposal and demonstration of 10-Gsymbol/sec 16-ary (40 Gbit/s) optical modulation/demodulation scheme, Proc. 30th Europ. Conf. Opt. Commun. (ECOC'04), Stockholm, Sweden (2004), paper We3.4.5

    Google Scholar 

  28. M. Serbay, T. Tokle, P. Jeppesen, W. Rosenkranz, 42.8 Gbit/s, 4 bits per symbol 16-ary inverse-RZ-QASK-DQPSK transmission experiment without polmux, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'07), Techn. Digest (Anaheim, CA, USA, 2007), paper OThL2

    Google Scholar 

  29. M. Seimetz, L. Molle, M. Gruner, R. Freund, Transmission reach attainable for single-polarization and PolMux coherent star 16QAM systems in comparison to 8PSK and QPSK at 10 Gbaud, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper OTuN2

    Google Scholar 

  30. X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S Ten, H.B. Matthew, S.K. Mishra, 32 Tb/s (320 ⨉ 114 Gb/s) PDM-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper PDPB4

    Google Scholar 

  31. C.N. Campopiano, B.G. Glazer, A coherent digital amplitude and phase modulation system, IRE Trans. Commun. Syst. 10, 90–95 (1962)

    Article  Google Scholar 

  32. N. Kikuchi, S. Sasaki, Optical dispersion-compensation free incoherent multilevel signal transmission over single-mode fibre with digital pre-distortion and phase pre-integration techniques, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Tu.1.E.2

    Google Scholar 

  33. L. Molle, M. Seimetz, D.D. Gross, R. Freund, M. Rohde, Polarization multiplexed 20 Gbaud Square 16QAM long-haul transmission over 1120 km using EDFA amplification, Proc. 35th Europ. Conf. Opt. Commun. (ECOC'09), Vienna, Austria (2009), paper 8.4.4

    Google Scholar 

  34. T. Kobayashi, A. Sano, H. Masuda, K. Ishihara, E. Yoshida, Y. Miyamoto, H. Yamazaki, T. Yamada, 160-Gb/s Polarization-multiplexed 16-QAM long-haul transmission over 3,123 km using digital coherent receiver with digital PLL based frequency offset compensator, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OTuD1

    Google Scholar 

  35. A.H. Gnauck, P.J. Winzer, S. Chandrasekhar, X. Liu, B. Zhu, D.W. Peckham, 10 ⨉ 224 Gb/s WDM transmission of 28 Gbaud PDM 16 QAM on a 50 GHz grid over 1,200 km of fiber, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper PDPB8P

    Google Scholar 

  36. M. Nakazawa, S. Okamoto, T. Omiya, K. Kasai, M. Yoshida, 256 QAM (64 Gbit/s) coherent optical transmission over 160 km with an optical bandwidth of 5.4 GHz, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OMJ5M

    Google Scholar 

  37. S.J. Trowbridge, High-Speed Ethernet transport. IEEE Commun. Mag. 45, 120–125 (2007)

    Article  Google Scholar 

  38. W. Shieh, H. Bao, Y. Tang, Coherent optical OFDM: theory and design. Opt. Express 16, 841–859 (2008)

    Article  ADS  Google Scholar 

  39. X. Yi, W. Shieh, Y. Ma: Phase noise on coherent optical OFDM systems with 16-QAM and and 64-QAM beyond 10 Gb/s, Proc. 33th Europ. Conf. Opt. Commun. (ECOC'07), Berlin, Germany (2007), paper 5.2.3

    Google Scholar 

  40. A.J. Lowery, L.B. Du, J. Armstrong, Performance of optical OFDM in ultralong-haul WDM lightwave systems. J. Lightw. Technol. 25, 131–136 (2007)

    Article  ADS  Google Scholar 

  41. R. Dischler, F. Buchali, Transmission of 1.2 Tb/s continuous waveband PDM-OFDM-FDM signal with spectral efficiency of 3.3 bit/s/Hz over 400 km of SSMF, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper PDPC2

    Google Scholar 

  42. M. Nölle, L. Molle, D.-D. Gross, R. Freund, Transmission of 5 ⨉ 62 Gbit/s DWDM coherent OFDM with a spectral efficiency of 7.2 bit/s/Hz using joint 64-QAM and 16-QAM modulation, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper OMR4

    Google Scholar 

  43. X. Liu, S. Chandrasekhar, B. Zhu, P.J. Winzer, A.H. Gnauck, D.W. Peckham, Transmission of a 448-Gb/s reduced-guard-interval CO-OFDM signal with a 60-GHz optical bandwidth over 2000 km of ULAF and five 80-GHz-grid ROADMs, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'10), Techn. Digest (San Diego, CA, USA, 2010), paper PDPC2

    Google Scholar 

  44. M. Nazarathy, J. Khurgin, R. Weidenfeld, Y. Meiman, P. Cho, R. Noe, I. Shpantzer, V. Karagodsky, Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Opt. Express 16, 15777–15810 (2008)

    Article  ADS  Google Scholar 

  45. R. Weidenfeld, M. Nazarathy, R. Noe, I. Shpantzer, Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback, Proc. 35th Europ. Conf. Opt. Commun. (ECOC'09), Vienna, Austria (2009), paper 2.3.3

    Google Scholar 

  46. K.P. Ho, H.-W. Cuei, Generation of arbitrary quadrature signals using one dual-drive modulator. J. Lightw. Technol. 23, 764–770 (2005)

    Article  ADS  Google Scholar 

  47. A. Kaplan, Y. Achiam, A. Greenblatt, I. Shpantzer, P. S. Cho, M. Tseytlin, A. Salamon, Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals, US Patent 7272271 (2003)

    Google Scholar 

  48. M. Seimetz, High-Order Modulation for Optical Fiber Transmission. Springer Series in Optical Sciences, vol. 143 (Springer, Berlin, 2009). ISBN: 978-3-540-93770-8

    Book  Google Scholar 

  49. M. Seimetz, Optical receiver for reception of M-ary star-shaped quadrature amplitude modulation with differentially encoded phases and its application, Patent DE 10 2006 030 915.4, German Patent and Trade Mark Office (2006)

    Google Scholar 

  50. M. Kuschnerov, F.N. Hauske, K. Piyawanno, B. Spinnler, E.-D. Schmidt, B. Lankl, Joint equalization and timing recovery for coherent fiber optic receivers, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Mo.3.D.3

    Google Scholar 

  51. S.J. Savory, Compensation of fibre impairments in digital coherent systems, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Mo.3.D.1

    Google Scholar 

  52. F.M. Gardner, A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Commun. 34, 423–429 (1986)

    Article  Google Scholar 

  53. M. Oerder, H. Meyr, Digital filter and square timing recovery. IEEE Trans. Commun. 36, 605–612 (1988)

    Article  Google Scholar 

  54. S.J. Savory, G. Gavioli, R.I. Killey, P. Bayvel, Transmission of 42.8 Gbit/s polarization multiplexed NRZ-QPSK over 6400 km of standard fiber with no optical dispersion compensation, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'07), Techn. Digest (Anaheim, CA, USA, 2007), paper OTuA1

    Google Scholar 

  55. M. Kuschnerov, D. Van den Borne, K. Piyawanno, F. N. Hauske, C.R.S. Fludger, T. Duthel, T. Wuth, J.C. Geyer, C. Schulien, B. Spinnler, E.-D. Schmidt, B. Lankl, Joint-polarization carrier phase estimation for XPM-limited coherent polarization-multiplexed QPSK transmission with OOK-neighbors, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Mo.4.D.2

    Google Scholar 

  56. L.G. Kazovsky, Phase- and polarization-diversity coherent optical techniques. J. Lightw. Technol. 7, 279–292 (1989)

    Article  ADS  Google Scholar 

  57. A.W. Davis, M.J. Pettitt, J.P. King, S. Wright, Phase diversity techniques for coherent optical receivers. J. Lightw. Technol. LT-5, 561–572 (1987)

    Article  ADS  Google Scholar 

  58. U. Koc, A. Leven, Y. Chen, N. Kaneda, Digital coherent quadrature phase-shift-keying (QPSK), Opt. Fiber Commun. Conf. (OFC'06), Techn. Digest (Anaheim, CA, USA, 2006), paper OThI1

    Google Scholar 

  59. R.E. Tench, J.-M.P. Delavaux, L.D. Tzeng, R.W. Smith, L.L. Buhl, R.C. Alferness, Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 µm. J. Lightw. Technol. LT-5, 492–501 (1987)

    Article  ADS  Google Scholar 

  60. J.W. Minford, O. Sneh, Apparatus and method for dissipating charge from lithium niobate devices, U.S. Patent 5,949,944 (1997)

    Google Scholar 

  61. P.G. Suchoski, T.K. Findakly, F.J. Leonberger, Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation. Opt. Lett. 13, 1050–1052 (1988)

    Article  ADS  Google Scholar 

  62. F. Koyama, K. Iga, Frequency chirping in external modulators. J. Lightw. Technol. 6, 87–93 (1988)

    Article  ADS  Google Scholar 

  63. N. Courjal, A. Martinez, H. Porte, A LiNbO3 modulator with chirp adjusted by domain inversion, Proc. Integrated Photonics Research, ed. by A. Sawchuk. OSA Trends in Optics and Photonics, vol. 78 (Opt. Soc. America, 2002), paper IFA3

    Google Scholar 

  64. K. Noguchi, O. Mitomi, H. Miyazawa, S. Seki, A broadband Ti:LiNbO3 optical modulator with a ridge structure. J. Lightw. Technol. 13, 1164–1168 (1995)

    Article  ADS  Google Scholar 

  65. H. Nagata, N.F. Oapos, Brien, W.R. Bosenberg, G.L. Reiff, K.R. Voisine, DC-voltage-induced thermal shift of bias point in LiNbO3 optical modulators. IEEE Photon. Technol. Lett. 16, 2460–2462 (2004)

    Article  Google Scholar 

  66. N. Grossard, J. Hauden, H. Porte, Low-loss and stable integrated optical Y-junction on lithium niobate modulators, Proc. 13th Europ. Conf. Integr. Optics (ECIO'07), Copenhagen, Denmark (2007), paper ThG08

    Google Scholar 

  67. M. Sugiyama, S. Doi, S. Taniguchi, T. Nakazawa, H. Onaka, Driver-less 40 Gb/s LiNbO3 modulator with sub-1 V drive voltage, Opt. Fiber Commun. Conf. (OFC/IOOC'02), Techn. Digest (Anaheim, CA, USA, 2002), paper PD-FB6

    Google Scholar 

  68. R. Schiek, M.L. Sundheimer, D.Y. Kim, Y. Baek, G.I. Stegeman, H. Seibert, W. Sohler, Direct measurement of cascaded nonlinearity in lithium niobate channel waveguides. Opt. Lett. 19, 1949–1951 (1994)

    Article  ADS  Google Scholar 

  69. E.L. Wooten, K.M. Kissa, A. Yi-Yan, E.J. Murphy, D.A. Lafaw, P.F. Hallemeier, D. Maack, D.V. Attanasio, D.J. Fritz, G.J. McBrien, D.E. Bossi, A Review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 6, 69–82 (2000)

    Article  Google Scholar 

  70. P.S. Cho, J.B. Khurgin, I. Shpantzer, Closed-loop control of LiNbO3 quadrature modulator for coherent communications, OSA Topical Meeting: Coherent Optical Technologies and Applications (COTA-2006) Whistler, BC, Canada (2006), paper CThC2

    Google Scholar 

  71. P.S. Cho, G. Harston, C.J. Kerr, A.S. Greenblatt, A. Kaplan, Y. Achiam, G. Levy-Yurista, M. Margalit, Y. Gross, J.B. Khurgin, Investigation of 2-bit/s/Hz 40-Gb/s DWDM transmission over 4 ⨉ 100-km SMF-28 fiber using RZ-DQPSK and polarization multiplexing. IEEE Photon. Technol. Lett. 16, 656–658 (2004)

    Article  ADS  Google Scholar 

  72. M.M. Howerton, R.P. Moeller, A.S. Greenblatt, R. Krähenbühl, Fully packaged broad-band LiNbO3 modulator with low drive voltage. IEEE Photon. Technol. Lett. 12, 792–794 (2000)

    Article  ADS  Google Scholar 

  73. M. Sugiyama, M. Doi, T. Hasegawa, T. Shiraishi, K. Tanaka, K. Tanaka, Low-drive-voltage and compact RZ-DQPSK LiNbO3 Modulator, Proc. 33rd Europ. Conf. Opt. Commun. (ECOC'07), Berlin, Germany (2007), paper 10.3.3

    Google Scholar 

  74. A. Kaplan, I. Shpantzer, Single chip two-polarization quadrature synthesizer analyser and optical communication system using the same, US Patent US 2009/0185810 A1 (2009)

    Google Scholar 

  75. R. Griffin, Integrated InP devices for advanced optical modulation formats, Proc. 14th Europ. Conf. Integr. Optics (ECIO'08), Eindhoven, The Netherlands (2008), paper ThA1

    Google Scholar 

  76. S. Corzine, P. Evans, M. Kato, G. He, M. Fisher, M. Raburn, A. Dentai, I. Lyubomirsky, A. Nilsson, J. Rahn, R. Nagarajan, C. Tsai, J. Stewart, D. Christini, M. Missey, V. Lal, H. Dinh, A. Chen, J. Thomson, W. Williams, P. Chavarkar, S. Nguyen, D. Lambert, S. Agashe, J. Rossi, P. Liu, J. Webjorn, T. Butrie, M. Reffle, R. Schneider, M. Ziari, C. Joyner, S. Grubb, F. Kish, D. Welch, 10-Channel ⨉ 40 Gb/s per channel DQPSK monolithically integrated InP-based transmitter PIC, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper PDP18

    Google Scholar 

  77. C.R. Doerr, P.J. Winzer, L. Zhang, L. Buhl, N.J. Sauer, Monolithic InP 16-QAM modulator, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper PDP20

    Google Scholar 

  78. C.R. Doerr, Compact advanced modulation format InP modulators and receivers, OSA Topical Meeting: Coherent Optical Technologies and Applications (COTA-2008) Boston, MA, USA (2008), paper IMA1

    Google Scholar 

  79. N. Kikuchi, InP Mach–Zehnder modulators for advanced modulation formats, OSA Topical Meeting: Coherent Optical Technologies and Applications (COTA-2008) Boston, MA, USA (2008), paper IMA4

    Google Scholar 

  80. http://www.oclaro.com

  81. R.G. Walker, High-speed III–V semiconductor intensity modulators. IEEE J. Quantum Electron. 27, 654–667 (1991)

    Article  ADS  Google Scholar 

  82. R.A. Griffin, R.G. Walker, R.I. Johnstone, Integrated devices for advanced modulation formats, Proc. IEEE/LEOS Workshop Advanced Modulation Formats, San Francisco, CA, 2004, pp. 39–40

    Google Scholar 

  83. J.M. Heaton, Y. Zhou, H. Gao, G. Murdoch, A. Miller, C. Main, D. Hannan, S.J. Clements, Gallium arsenide linearised electro-optic waveguide modulators for RF-on-fibre applications, Proc. SPIE Conf. on Electro-Optical Remote Sensing, Photonic Technologies, and Applications II ed. by G.W. Kamerman, O.K. Steinvall, K.L. Lewis, T.J. Merlet, R.C. Hollins, Cardiff, UK, September 2008. SPIE Proc., vol. 7114, 71140M. doi: 10.1117/12.802211

    Google Scholar 

  84. R.A. Griffin, Integrated DQPSK transmitters, Opt. Fiber Commun. Conf. (OFC'05), Techn. Digest (Anaheim, CA, USA, 2005), paper OWE3

    Google Scholar 

  85. www.lightwaveonline.com, Lightwave, 27(1), 27(2) (2010)

  86. A. Davis, M. Pettitt, J.King, S. Wright, Phase diversity techniques for coherent optical receivers. J. Lightw. Technol. LT-5, 561–572 (1987)

    Article  ADS  Google Scholar 

  87. R.P. Rickard, Coherent optical receiver, US Patent 7,085,501, assigned to Nortel Networks Ltd. (2006)

    Google Scholar 

  88. R. Epworth, J. Whiteaway, S.J. Savory, 3 Fibre I and Q coupler, US Patent 6,859,586, assigned to Nortel Networks Ltd. (2005)

    Google Scholar 

  89. L.G. Kazovsky, L. Curtis, W.C. Young, N.K. Cheung, All-fiber 90° optical hybrid for coherent communication. Appl. Opt. 26, 437–439 (1987)

    Article  ADS  Google Scholar 

  90. C. Hsieh, Free-space optical hybrid, US Patent 0223932, assigned to Optoplex Corporation (2007)

    Google Scholar 

  91. E.C.M. Pennings, D. Schouten, G.D. Khoe, R.A.J.C.M. van Gils, G.F.G. Depovere, Ultra fabrication tolerant fully packaged micro-optical polarization diversity hybrid. J. Lightw. Technol. 13, 1985–1991 (1995)

    Article  ADS  Google Scholar 

  92. R. Langenhorst, W. Pieper, M. Eiselt, D. Rohde, H.G. Weber, Balanced phase and polarization diversity coherent optical receiver. IEEE Photon. Technol. Lett. 3, 814–816 (1991)

    Article  Google Scholar 

  93. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, E. Dietrich, Integrated optics eight-port 90° hybrid on LiNbO3. J. Lightw. Technol. 7, 794–798 (1989)

    Article  ADS  Google Scholar 

  94. A. Kaplan, Y. Achiam, A.S. Greenblatt, G. Harston, P.S. Cho, LiNbO3 integrated optical QPSK modulator and coherent receiver, Proc.11th Europ. Conf. Integr. Optics (ECIO'03), Prague, CZ (2003), pp. 79–82

    Google Scholar 

  95. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, E. Dietrich, Integrated optics eight-port 90° hybrid on LiNbO3. J. Lightw. Technol. 7, 794–798 (1989)

    Article  ADS  Google Scholar 

  96. E.C.M. Pennings, R.J. Deri, R. Bhat, T.R. Hayes, N.C. Andreadakis, Ultracompact, all-passive optical 90°-hybrid on InP using self-imaging. IEEE Photon. Technol. Lett. 5, 701–703 (1993)

    Article  ADS  Google Scholar 

  97. Th. Niemeier, R. Ulrich, Quadrature outputs from fiber interferometer with 4 ⨉ 4 coupler. Opt. Lett. 11, 677–679 (1986)

    Article  ADS  Google Scholar 

  98. M. Bachmann, P.A. Besse, H. Melchior, Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and non-uniform power splitting. Appl. Opt. 34, 6898–6910 (1995)

    Article  ADS  Google Scholar 

  99. A. Kaplan, Design of ring resonators with tunable couplers. IEEE Sel. Top. Quantum Electron. 12, 86–95 (2006)

    Article  Google Scholar 

  100. T. Pfau, R. Peveling, F. Samson, J. Romoth, S. Hoffmann, S. Bhandare, S. Ibrahim, D. Sandel, O. Adamczyk, M. Porrmann, R. Noé, J. Hauden, N. Grossard, Y. Achiam, Polarization-multiplexed 2.8 Gbit/s synchronous QPSK transmission with real-time digital polarization tracking, Proc. 33rd Europ. Conf. Opt. Commun. (ECOC'07), Berlin, Germany (2007), paper 8.3.3

    Google Scholar 

  101. H. Sun, K.-T. Wu, K. Roberts, Real-time measurements of a 40 Gb/s coherent system. Opt. Express 16, 873–879 (2008)

    Article  ADS  Google Scholar 

  102. P.S. Cho, G. Harston, A. Greenblatt, A. Kaplan, Y. Achiam, R.M. Bertenburg, A. Brennemann, B. Adoram, P. Goldgeier, A. Hershkovits, Integrated optical coherent balanced receiver, OSA Topical Meeting: Coherent Optical Technologies and Applications (COTA-2006) Whistler, BC, Canada (2006), paper CThB2

    Google Scholar 

  103. K. Roberts, Real time 40 Gb/s coherent system, OSA Topical Meeting: Coherent Optical Technologies and Applications (COTA, 2008) Boston, MA USA (2008), paper CWC1

    Google Scholar 

  104. M. Seimetz, Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper OTuM2

    Google Scholar 

  105. H. Louchet, K. Kuzmin, A. Richter, Improved DSP algorithms for coherent 16-QAM transmission, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper Tu.1.E.6

    Google Scholar 

  106. T. Pfau, S. Hoffmann, R. Noé, Hardware-efficient coherent digital receiver concept with feedforward carrier recovery for M-QAM constellations. J. Lightw. Technol. 27, 989–999 (2009)

    Article  ADS  Google Scholar 

  107. M. Seimetz, System degradation by the SPM-induced mean nonlinear phase shift in optical QAM transmission, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'09), Techn. Digest (San Diego, CA, USA, 2009), paper JWA38

    Google Scholar 

  108. R. Freund, H. Louchet, M. Gruner, L. Molle, M. Seimetz, A. Richter, 80 Gbit/s/λ polarization multiplexed Star-16QAM WDM transmission over 720 km SSMF with electronic distortion equalization, Proc. 14th OptoElectron. Commun. Conf. (OECC-2009), Hong Kong (2009), paper WP2

    Google Scholar 

  109. R.-J. Essiambre, G.J. Foschini, P.J. Winzer, G. Kramer, Exploring capacity limits of fibre-optic communication systems, Proc. 34th Europ. Conf. Opt. Commun. (ECOC'08), Brussels, Belgium (2008), paper We.1.E.1

    Google Scholar 

  110. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O.B. Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, S. Bigo, Transmission of 16.4 Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver, Opt. Fiber Commun. Conf. and Nat. Fiber Opt. Eng. Conf. (OFC/NFOEC'08), Techn. Digest (San Diego, CA, USA, 2008), paper PDP3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaakov Achiam PhD , Arkady Kaplan Dr. or Matthias Seimetz Prof. Dr.-Ing. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Achiam, Y., Kaplan, A., Seimetz, M. (2012). Systems with Higher-order Modulation. In: Venghaus, H., Grote, N. (eds) Fibre Optic Communication. Springer Series in Optical Sciences, vol 161. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20517-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20517-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20516-3

  • Online ISBN: 978-3-642-20517-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics