Skip to main content

The Nitrogen Cycle: Implications for Management, Soil Health, and Climate Change

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 29))

Abstract

It is estimated that around 170 Tg N year−1 of reactive nitrogen (N) is produced on a global basis by industry, fossil fuel burning, and biological N fixation. It is applied to land both deliberately to help produce enough food and fiber, and indirectly via atmospheric deposition as pollution. These human interventions to the N cycle, which is naturally highly conservative to loss pathways, are contributing to climate change effects, for example, by enhancing nitrous oxide (N2O) emissions. Nitrogen-driven carbon (C) storage through increased plant growth in non-forested or agricultural systems may be modest, but increased N deposition has been shown to substantially increase carbon dioxide (CO2) uptake by certain forests. Climate change drivers such as elevated CO2 and temperature can further influence the terrestrial C and N cycling and alter soil N availability, which constrains the CO2 sink capacity of earth’s biosphere. In this chapter, an attempt has been made to evaluate the impacts of anthropogenic drivers on the terrestrial N cycle with implications for soil health and climate change. Consequences of changes in soil health parameters such as N availability, carbon sequestration, and acidification in relation to managing fertilizer N use in agro-ecosystems with the aim of increasing productivity but reducing greenhouse gas emissions have been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems – hypothesis revisited. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems. Bioscience 48:921–934

    Article  Google Scholar 

  • Ågren GI, Bosatta E, Magill AH (2001) Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia 128:94–98

    Article  Google Scholar 

  • Badgley C, Moghtader J, Quintero E, Zakem E, Chappell MJ, Avilés-Vàzquez K, Samulon A, Perfecto I (2007) Organic agriculture and the global food supply. Renewable Agric Food Syst 22:86–108

    Article  Google Scholar 

  • Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH +4 , and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    PubMed  CAS  Google Scholar 

  • Bhupinderpal-Singh, Nordgren A, Lofvenius MO, Högberg MN, Mellander PE, Högberg P (2003) Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ 26:1287–1296

    Article  Google Scholar 

  • Bijay-Singh (2008) Crop demand-driven site specific nitrogen applications in rice and wheat – some recent advances. Indian J Agron 53:157–166

    Google Scholar 

  • Bodelier PLE, Laanbroek HJ (2004) Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol 47:265–277

    Article  PubMed  CAS  Google Scholar 

  • Boulart C, Flament P, Gentilhomme V, Deboudt K, Migon C, Lizon F, Schapira M, Lefebvre A (2006) Atmospherically-promoted photosynthetic activity in a well-mixed ecosystem: significance of wet deposition events of nitrogen compounds. Estuar Coast Shelf Sci 69:449–458

    Article  Google Scholar 

  • Bouwman AF, Van Drecht G, Knoop JM, Beusen AHW, Meinardi CR (2005) Exploring changes in river nitrogen export to the world’s oceans. Global Biogeochem Cyc 19:GB1002. doi:10.1929/2004GB0002314

    Article  Google Scholar 

  • Brooks M (2003) Effects of increased soil nitrogen on the dominance of alien annual plants in the Mojave desert. J Appl Ecol 40:344–353

    Article  Google Scholar 

  • Cassman KG, Dobermann A, Walters D (2002) Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 31:132–140

    PubMed  Google Scholar 

  • Cassman KG, Dobermann A, Walters DT, Yang H (2003) Meeting cereal demand while protecting natural resources and improving environmental quality. Annu Rev Environ Res 28:315–358

    Article  Google Scholar 

  • Christensen BT (2004) Tightening the nitrogen cycle. In: Schjønning P, Elmholt S, Christensen BT (eds) Managing soil quality: challenges in modern agriculture. CAB International, Wallingford, pp 47–67

    Chapter  Google Scholar 

  • Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2007) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys Discuss 7:11191–11205

    Article  Google Scholar 

  • Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 499–587

    Google Scholar 

  • Dentener F et al. (2006) Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeochem Cyc 20:GB4003. doi:10.1029/2005GB002672

  • Deutsch C, Sarmiento JL, Sigman DM, Gruber N, Dunne JP (2007) Spatial coupling of nitrogen inputs and losses in the ocean. Nature 445:163–167

    Article  PubMed  CAS  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) Carbon pools and flux of global forest ecosystems. Science 263:185–190

    Article  PubMed  CAS  Google Scholar 

  • Dou F, Wright AL, Hons FM (2008) Sensitivity of labile soil organic carbon to tillage in wheat-based cropping systems. Soil Sci Soc Am J 72:1445–1453

    Article  CAS  Google Scholar 

  • Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262–265

    Article  CAS  Google Scholar 

  • Duce RA, LaRoche J, Altieri K, Arrigo KR, Baker AR, Capone DG, Cornell S, Dentener F, Galloway J, Ganeshram RS, Geider RJ, Jickells T, Kuypers MM, Langlois R, Liss PS, Liu SM, Middelburg JJ, Moore CM, Nickovic S, Oschlies A, Pedersen T, Prospero J, Schlitzer R, Seitzinger S, Sorensen LL, Uematsu M, Ulloa O, Voss M, Ward B, Zamora L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320(5878):893–897

    Article  PubMed  CAS  Google Scholar 

  • Duxbury JM (2006) Soil carbon sequestration and nitrogen management for greenhouse gas mitigation. In: Climate change and agriculture: promoting practical and profitable responses, pp IV-5–IV-7. www.climateandfarming.org/pdfs/FactSheets/IV.2Soil.pdf. Accessed 17 Aug 2009

  • Duxbury JM, Bouldin DR, Terry R, Tate RL (1982) Emissions of nitrous oxide from soils. Nature 298:462–464

    Article  CAS  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • Fog K (1988) The effect of added nitrogen on the rate of decomposition of organic matter. Biol Rev 63:433–462

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Franklin O, Högberg P, Ekblad A, Ågren GI (2003) Pine forest floor carbon accumulation in response to N and PK additions – bomb 14C modelling and respiration studies. Ecosystems 6:644–658

    Article  CAS  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: two hundred years of change. Ambio 31:64–71

    PubMed  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Asner GP, Cleveland C, Green P, Holland E, Karl DM, Michaels AF, Porter JH, Townsend A, Vorosmarty C (2004) Nitrogen cycles: past, present and future. Biogeochemistry 70:153–226

    Article  CAS  Google Scholar 

  • Glendining MJ, Powlson DS (1995) The effects of long-continued applications of inorganic nitrogen fertilizer on soil organic nitrogen – a review. In: Lal R, Stewart BA (eds) Soil management: experimental basis for sustainability and environmental quality. Advances in Soil Science Series. Lewis, Boca Raton, pp 385–446

    Google Scholar 

  • Groffman PJ, Hardy JP, Fisk MC, Fahey TJ, Driscoll CT (2009) Climate variation and soil carbon and nitrogen cycling processes in a northern hardwood forest. Ecosystems 12:927–943

    Article  CAS  Google Scholar 

  • Gruber N, Galloway JN (2008) An Earth-system perspective of the global nitrogen cycle. Nature 451:293–296

    Article  PubMed  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Högberg P, Hogberg MN, Gottlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Nasholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    PubMed  Google Scholar 

  • Hovenden MJ, Newton PCD, Carran RA, Theobald P, Wills KE, Vander Schoor JK, Williams AL, Osanai Y (2008) Warming prevents the elevated CO2-induced reduction in available soil nitrogen in a temperate, perennial grassland. Global Change Biol 14:1018–1024

    Article  Google Scholar 

  • Hoyle FC, Murphy DV, Fillery IRP (2006) Temperature and stubble management influence microbial CO2–C evolution and gross N transformation rates. Soil Biol Biochem 38:71–80

    Article  CAS  Google Scholar 

  • Hu L, Yang H, Wang W, Guo J (2009) Soil nutrient responses to one year of simulated global warming and nitrogen deposition on the Songnen meadow steppes, northeast China. http://www.paper.edu.cn/index.php/default/selfs/downpaper/huliangjun326400-self-200906-20. Accessed 27 July 2010

  • Hudson RJM, Gherini SA, Goldstein RA (1994) Modeling the global carbon cycle nitrogen-fertilization of the terrestrial biosphere and the missing CO2 sink. Global Biogeochem Cyc 8:307–333

    Article  CAS  Google Scholar 

  • Hungate B, Dukes JS, Shaw MR, Luo Y, Field CB (2003) Nitrogen and climate. Science 302:1512–1513

    Article  PubMed  CAS  Google Scholar 

  • IFA (International Fertilizer Industry Association) (2009) Statistics. http://www.fertilizer.org/

  • Ineson P, Benham DG, Poskitt J, Harrison AF, Taylor K, Woods C (1998) Effects of climate change on nitrogen dynamics in upland soils. 1. A soil warming study. Global Change Biol 4:153–161

    Article  Google Scholar 

  • Jagadamma S, Lal R, Hoeft RG, Nafziger ED, Adee EA (2007) Nitrogen fertilization and cropping systems effects on soil organic carbon and total nitrogen pools under chisel-plow tillage in Illinois. Soil Tillage Res 95:348–356

    Article  Google Scholar 

  • Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010) Reduction of forest soil respiration in response to nitrogen deposition. Nat Geosci 3:315–322

    Article  CAS  Google Scholar 

  • Jarvis PG, Fowler DG (2001) Forests and the atmosphere. In: Evans J (ed) The forests handbook, vol 1. Blackwell Science, Oxford, pp 229–281

    Chapter  Google Scholar 

  • Jensen B, Christensen BT (2004) Interactions between elevated CO2 and added N: effects on water use, biomass, and soil 15N uptake in wheat. Acta Agric Scand 54B:175–184

    Google Scholar 

  • Khan SA, Mulvaney RL, Ellsworth TR, Boast CW (2007) The myth of nitrogen fertilization for soil carbon sequestration. J Environ Qual 36:1821–1832

    Article  PubMed  CAS  Google Scholar 

  • Kitur BK, Smith MS, Blevins RL, Frye WW (1984) Fate of 15N-depleted ammonium nitrate applied to no-tillage and conventional tillage corn. Agron J 76:240–242

    Article  Google Scholar 

  • Knorr M, Frey SD, Curtis PS (2005a) Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86:3252–3257

    Article  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005b) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  PubMed  CAS  Google Scholar 

  • Koch GW, Mooney HA (eds) (1996) Carbon dioxide and terrestrial ecosystems. Academic, San Diego

    Google Scholar 

  • Kralova M, Masscheleyn PH, Lindau CW, Patrick WH (1992) Production of dinitrogen and nitrous oxide in soil suspensions as affected by redox potential. Water Air Soil Pollut 61:37–45

    Article  CAS  Google Scholar 

  • Lamarque J-F, Kiehl J, Brasseur G, Butler T, Cameron-Smith P, Collins WJ, Granier C, Hauglustaine D, Hess P, Holland E, Horowitz L, Lawrence M, Mckenna D, Merilees P, Prather M, Rasch P, Rotman D, Shindell D, Thornton P (2005) Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. J Geophys Res 110:D19303. doi: 10.1029/2005JD005825

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Li C, Frolking S, Butterbach-Bahl K (2005) Carbon sequestration in arable soils is likely to increase nitrous oxide emissions, offsetting reductions in climate radiative forcing. Clim Change 72:321–338

    Article  CAS  Google Scholar 

  • Liebig MA, Varvel GE, Doran JW, Wienhold BJ (2002) Crop sequence and nitrogen fertilization effects on soil properties in the Western Corn Belt. Soil Sci Soc Am J 66:596–601

    Article  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate BA, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Matson P, Lohse KA, Hall SJ (2002) The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio 31:113–119

    PubMed  Google Scholar 

  • Medlyn BE, Berbigier P, Clement R, Grelle A, Loustau D, Linder S, Wingate L, Jarvis PG, Sigurdsson BD, McMurtrie RE (2005) The carbon balance of coniferous forests growing in contrasting climatic conditions: a model-based analysis. Agric Forest Meteorol 131:97–124

    Article  Google Scholar 

  • Monteny G-J, Bannink A, Chadwick D (2006) Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ 112:163–170

    Article  CAS  Google Scholar 

  • Müller C, Rütting T, Abbasi MK, Laughlin RJ, Kammann C, Clough TJ, Sherlock RR, Kattge J, Jäger H-J, Watson CJ, Stevens RJ (2009) Effect of elevated CO2 on soil N dynamics in a temperate grassland soil. Soil Biol Biochem 41:1996–2001

    Article  Google Scholar 

  • Mulvaney RL, Khan SA, Ellsworth TR (2009) Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production. J Environ Qual 38:2295–2314

    Article  PubMed  CAS  Google Scholar 

  • Nadelhoffer KJ, Emmett BA, Gundersen P, Kjønaas OJ, Koopmans CJ, Schleppi P, Tietema A, Wright RF (1999) Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398:145–148

    Article  CAS  Google Scholar 

  • Niggli U, Fließbach A, Hepperly P, Scialabba N (2009) Low greenhouse gas agriculture: mitigation and adaptation potential of sustainable farming systems. Rev. 2 – 2009. Food and Agriculture Organization of the United Nations, Rome, 21 pp

    Google Scholar 

  • Olson RV (1980) Fate of tagged nitrogen fertilizer applied to irrigated corn. Soil Sci Soc Am J 44:514–517

    Article  CAS  Google Scholar 

  • Paustian K, Babcock BA, Hatfield J, Lal R, McCarl BA, McLaughlin S, Mosier A, Rice C, Robertson GP, Rosenberg NJ, Rosenzweig C, Schlesinger WH, Zilberman D (2004) Agricultural mitigation of greenhouse gases: science and policy options, CAST (Council on Agricultural Science and Technology) Report, R141 2004. ISBN 1-887383-26-3, 120 pp

    Google Scholar 

  • Persson T, Karlsson PS, Seyferth U, Sjöberg RM, Rudebeck A (2000) Carbon mineralisation in European forest soils. In: Schulze ED (ed) Carbon and nitrogen cycling in European forest ecosystems, Ecological Studies 142. Springer, Berlin, pp 257–275

    Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625

    Article  Google Scholar 

  • Powlson D (2005) Will soil amplify climate change? Nature 433:204–205

    Article  PubMed  CAS  Google Scholar 

  • Powlson DS, Jenkinson DS, Johnston AE, Poulton PR, Glendining MJ, Goulding KWT (2010) Comments on “Synthetic nitrogen fertilizers deplete soil nitrogen: a global dilemma for sustainable cereal production,” by R.L. Mulvaney, S.A. Khan, and T.R. Ellsworth in the Journal of Environmental Quality 2009 38:2295–2314. J Environ Qual 39:749–752

    Article  PubMed  CAS  Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nat Geosci 1:430–437

    Article  CAS  Google Scholar 

  • Reddy GB, Reddy KR (1993) Fate of nitrogen-15 enriched ammonium nitrate applied to corn. Soil Sci Soc Am J 57:111–115

    Article  Google Scholar 

  • Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006a) Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922–925

    Article  PubMed  CAS  Google Scholar 

  • Reich PB, Hungate BA, Luo Y (2006b) Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Ann Rev Ecol Evol Syst 37:611–636

    Article  Google Scholar 

  • Riley WJ, Matson PA (2000) NLOSS: a mechanistic model of denitrified N2O and N2 evolution from soil. Soil Sci 165:237–249

    Article  CAS  Google Scholar 

  • Robertson GP (2004) Abatement of nitrous oxide, methane and other non-CO2 greenhouse gases: the need for a systems approach. In: Field CB, Raupach MR (eds) The global carbon cycle. Integrating humans, climate, and the natural world, SCOPE 62. Island Press, Washington, pp 493–506

    Google Scholar 

  • Rochette P, Janzen HH (2005) Towards a revised coefficient for estimating N2O emissions from legumes. Nutr Cycl Agroecosyst 73:171–179

    Article  CAS  Google Scholar 

  • Rustad LE, Melillo JM, Mitchell MJ, Fernandez IJ, Steudler PA, McHale PJ (2000) Effects of soil warming on C and N cycling in northern U.S. forest soils. In: Mickler R, Birdsey R, Hom J (eds) Responses of northern U.S. forests to environmental change. Springer, Berlin, pp 357–381

    Google Scholar 

  • Rustad LE, Campbell J, Marion GM, Norby RJ, Mitchell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001) A meta-analysis of the response of soil respiration, net N mineralization, and aboveground plant growth in experimental ecosystem warming. Oecologia 126:543–562

    Article  Google Scholar 

  • Saito M, Ishii K (1987) Estimation of soil nitrogen mineralization in corn-grown fields based on mineralization parameters. Soil Sci Plant Nutr 33:555–566

    Google Scholar 

  • Scavia D, Bricker SB (2006) Coastal eutrophication assessment in the United States. Biogeochemistry 79:187–208

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry, an analysis of global climate change. Academic, San Diego

    Google Scholar 

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208

    Article  PubMed  CAS  Google Scholar 

  • Seitzinger S, Harrison JA, Böhlke JK, Bouwman AF, Lowrance R, Peterson B, Tobias C, van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090

    Article  PubMed  CAS  Google Scholar 

  • Shaw MR, Harte J (2001) Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone. Global Change Biol 7:193–210

    Article  Google Scholar 

  • Smith KA, Conen F (2004) Impacts of land management on fluxes of trace greenhouse gases. Soil Use Manage 20:255–263

    Article  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O (2007a) Agriculture. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation: contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 498–540. http://www.ipcc.ch/ipccreports/ar4-wg3.htm

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl BA, Ogle SM, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider UA, Towprayoon S (2007b) Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric Ecosyst Environ 118:6–28

    Article  Google Scholar 

  • Sokolov AP, Kicklighter DW, Melillo JM, Felzer BS, Schlosser CA, Cronin TW (2008) Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J Clim 21:3776–3796

    Article  Google Scholar 

  • Stevens WB, Hoeft RG, Mulvaney RL (2005) Fate of nitrogen-15 in a long-term nitrogen rate study: II. Nitrogen uptake efficiency. Agron J 97:1046–1053

    Article  CAS  Google Scholar 

  • Tamm CO, Lake JV, Miller HG (1982) Nitrogen cycling in undisturbed and manipulated boreal forest. Phil Trans R Soc Lond 296(1082):419–425

    Article  Google Scholar 

  • Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald NM (2007) Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem Cyc 21:GB4018. doi:10.1029/2006GB002868

    Article  Google Scholar 

  • Thornton PE, Doney SC, Lindsay K, Moore JK, Mahowald N, Randerson JT, Fung I, Lamarque J-F, Feddema JJ, Lee Y-H (2009) Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosci Discuss 6:3303–3354

    Article  Google Scholar 

  • Uehara G, Gillman G (1981) The mineralogy, chemistry, and physics of tropical soils with variable charge clays. Westview, Boulder, 160pp

    Google Scholar 

  • US Geological Survey (2008) Nitrogen (fixed) – ammonia. In: Mineral commodity summaries 2008. U.S. Department of the Interior, U.S. Geological Survey, pp 118–119

    Google Scholar 

  • van Groenigen KJ, Gorissen A, Six J, Harris D, Kuikman PJ, van Groenigen JW, van Kessel C (2005) Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biol Biochem 37:497–506

    Article  Google Scholar 

  • van Kessel C, Clough T, van Groenigen JW (2009) Dissolved organic nitrogen: an overlooked pathway of nitrogen loss from agricultural systems? J Environ Qual 38:393–401

    Article  PubMed  Google Scholar 

  • Vanotti MB, Bundy LG, Peterson AE (1997) Nitrogen fertilizer and legume-cereal rotation effects on soil productivity and organic matter dynamics in Wisconsin. In: Paul EA et al (eds) Soil organic matter in temperate agroecosystems: long-term experiments in North America. CRC, Boca Raton, pp 105–119

    Google Scholar 

  • Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142

    Article  Google Scholar 

  • Verburg PSJ (2005) Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems. Biol Fertil Soils 41:257–261

    Article  CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea – how can it occur? Biogeochemistry 13:87–115

    Article  Google Scholar 

  • West TO, Post WM (2002) Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci Soc Am J 66:1930–1946

    Article  CAS  Google Scholar 

  • Xu X, Tian H, Hui D (2008) Convergence in the relationship of CO2 and N2O exchanges between soil and atmosphere within terrestrial ecosystems. Global Change Biol 14:1651–1660

    Article  Google Scholar 

  • Yan X, Ohara T, Akimoto H (2003) Development of region-specific emission factors and estimation of methane emission from rice field in East, Southeast and South Asian countries. Global Change Biol 9:237–254

    Article  Google Scholar 

Download references

Acknowledgments

I appreciate constructive comments from two anonymous reviewers as well as the editors, especially the senior editor, on earlier drafts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijay-Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bijay-Singh (2011). The Nitrogen Cycle: Implications for Management, Soil Health, and Climate Change. In: Singh, B., Cowie, A., Chan, K. (eds) Soil Health and Climate Change. Soil Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20256-8_6

Download citation

Publish with us

Policies and ethics