Skip to main content

Wavelet Representations and Their Commutant

  • Conference paper
  • First Online:
Analysis for Science, Engineering and Beyond

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 6))

Abstract

We study the reducibility of the wavelet representation associated to various QMF filters, including those associated to Cantor sets. We show there are connections between this problem, the harmonic analysis of transfer operators and the ergodic properties of shifts on solenoids. We prove that if the QMF filter does not have constant absolute value, then the wavelet representations is reducible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bildea, S., Dutkay, D.E., Picioroaga, G.: MRA super-wavelets. New York J. Math. 11, 1–19 (electronic) (2005)

    Google Scholar 

  2. Baggett, L.W., Furst, V., Merrill, K.D., Packer, J.A.: Generalized filters, the low-pass condition, and connections to multiresolution analyses. J. Funct. Anal. 257(9), 2760–2779 (2009)

    Google Scholar 

  3. Baggett, L.W., Furst, V., Merrill, K.D., Packer, J.A.: Classification of generalized multiresolution analyses. Preprint (2009)

    Google Scholar 

  4. Baggett, L.W., Larsen, N.S., Merrill, K.D., Packer, J.A., Raeburn, I.: Generalized multiresolution analyses with given multiplicity functions. J. Fourier Anal. Appl. 15(5), 616–633 (2009)

    Google Scholar 

  5. Baggett, L.W., Larsen, N.S., Packer, J.A., Raeburn, I., Ramsay, A.: Direct limits, multiresolution analyses, and wavelets. J. Funct. Anal. 258(8), 2714–2738 (2010)

    Google Scholar 

  6. Daubechies, I.: Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1992)

    Google Scholar 

  7. Dutkay, D.E., Jorgensen, P.E.T.: Wavelets on fractals. Rev. Mat. Iberoam. 22(1), 131–180 (2006)

    Google Scholar 

  8. Dutkay, D.E., Jorgensen, P.E.T.: Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247(1), 110–137 (2007)

    Google Scholar 

  9. Dutkay, D.E., Jorgensen, P.E.T.: Martingales, endomorphisms, and covariant systems of operators in Hilbert space. J. Oper. Theory 58(2), 269–310 (2007)

    Google Scholar 

  10. Dutkay, D.E., Larson, D.R., Silvestrov, S.: Irreducible wavelet representations and ergodic automorphisms on solenoids. preprint (2009)

    Google Scholar 

  11. d’Andrea, J., Merrill, K., Packer, J.: Fractal wavelets of Dutkay-Jorgensen type for the Sierpinski gasket space Frames and operator theory in analysis and signal processing, Contemp. Math. 451, 69–88 (2008)

    Google Scholar 

  12. Dutkay, D.E.: Harmonic analysis of signed Ruelle transfer operators. J. Math. Anal. Appl. 273(2), 590–617 (2002)

    Google Scholar 

  13. Dutkay, D.E.: Low-pass filters and representations of the Baumslag Solitar group. Trans. Amer. Math. Soc. 358(12), 5271–5291 (electronic) (2006)

    Google Scholar 

  14. Han, D., Larson, D.R.: Frames, bases and group representations. Mem. Amer. Math. Soc. 147(697), x+94 (2000)

    Google Scholar 

  15. Ionescu, M., Muhly, P.S.: Groupoid methods in wavelet analysis. In: Group representations, ergodic theory, and mathematical physics: a tribute to George W. Mackey, volume 449 of Contemp. Math., pages 193–208. Amer. Math. Soc., Providence, RI (2008)

    Google Scholar 

  16. Jorgensen, P.E.T.: Ruelle operators: functions which are harmonic with respect to a transfer operator. Mem. Am. Math. Soc. 152(720), viii+60 (2001)

    Google Scholar 

  17. Lim, L.-H., Packer, J.A., Taylor, K.F.: A direct integral decomposition of the wavelet representation. Proc. Am. Math. Soc. 129(10), 3057–3067 (electronic) (2001)

    Google Scholar 

  18. Larsen, N.S., Raeburn, I.: From filters to wavelets via direct limits. In: Operator theory, operator algebras, and applications, volume 414 of Contemp. Math., pages 35–40. Amer. Math. Soc., Providence, RI (2006)

    Google Scholar 

  19. Larsen, N.S., Raeburn, I.: Projective multi-resolution analyses arising from direct limits of Hilbert modules. Math. Scand. 100(2), 317–360 (2007)

    Google Scholar 

Download references

Acknowledgements

This research was supported in part by The Swedish Foundation for International Cooperation in Research and Higher Education (STINT), The Swedish Research Council, The Swedish Royal Academy of Sciences and The Crafoord Foundation. The second author also is grateful to Institut Mittag-Leffler for support of his participation in Quantum Information Theory program in Autumn 2010, which has been beneficial for completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Silvestrov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dutkay, D.E., Silvestrov, S. (2012). Wavelet Representations and Their Commutant. In: Åström, K., Persson, LE., Silvestrov, S. (eds) Analysis for Science, Engineering and Beyond. Springer Proceedings in Mathematics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20236-0_9

Download citation

Publish with us

Policies and ethics