Skip to main content

Scaling, Wavelets, Image Compression, and Encoding

  • Conference paper
  • First Online:
Analysis for Science, Engineering and Beyond

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 6))

  • 1025 Accesses

Abstract

In this paper we develop a family of multi-scale algorithms with the use of filter functions in higher dimension.

While our primary application is to images, i.e., processes in two dimensions, we prove our theorems in a more general context, allowing dimension 3 and higher.

The key tool for our algorithms is the use of tensor products of representations of certain algebras, the Cuntz algebras O N , from the theory of algebras of operators in Hilbert space. Our main result offers a matrix algorithm for computing coefficients for images or signals in specific resolution subspaces. A special feature with our matrix operations is that they involve products and iteration of slanted matrices. Slanted matrices, while large, have many zeros, i.e., are sparse. We prove that as the operations increase the degree of sparseness of the matrices increase. As a result, only a few terms in the expansions will be needed for achieving a good approximation to the image which is being processed. Our expansions are local in a strong sense.

An additional advantage with the use of representations of the algebras O N , and tensor products is that we get easy formulas for generating all the choices of matrices going into our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash, R.B.: Information Theory. Dover Publications Inc., New York (1990) Corrected reprint of the 1965 original.

    Google Scholar 

  2. Aldroubi, A., Cabrelli, C., Hardin, D., Molter, U.: Optimal Shift Invariant Spaces and Their Parseval Frame Generators. Appl. Comput. Harmon. Anal. 23(2), 273–283 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Albeverio, S., Jorgensen, P.E.T., Paolucci, A.M.: Multiresolution Wavelet Analysis of Integer Scale Bessel Functions. J. Math. Phys. 48(7), 073516 (2007)

    Article  MathSciNet  Google Scholar 

  4. Ball, J.A., Vinnikov, V.: Functional Models for representations of the Cuntz algebra. Operator theory, systems theory and scattering theory: Multidimensional generalizations. Oper. Theory Adv. Appl. 157, 1–60, Birkhäuser, Basel (2005)

    Google Scholar 

  5. Cleary, J.G., Witten, I.H., Bell, T.C.: Text Compression. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  6. Baggett, L., Jorgensen, P.E.T., Merrill, K., Packer, J.: A non-MRA C r frame wavelet with rapid decay. Acta Appl. Math. (2005)

    Google Scholar 

  7. Bose, T.: Digital Signal and Image Processing. Wiley, New York (2003)

    Google Scholar 

  8. Bose, T., Chen, M.-Q., Thamvichai, R.: Stability of the 2-D Givone-Roesser model with periodic coefficients: IEEE Trans. Circuits Syst. I. Regul. Pap. 54(3), 566–578 (2007)

    Article  MathSciNet  Google Scholar 

  9. Bratelli, O., Jorgensen, P.E.T.: Wavelets Through a Looking Glass: The World of the Spectrum. Birkhäuser, Basel (2002)

    Google Scholar 

  10. Burger, W.: Principles of Digital Image Processing: Fundamental Techniques, Springer (2009)

    Google Scholar 

  11. Burdick, H.E.: Digital Imaging: Theory and Applications. Mcgraw-Hill, New York (1997)

    Google Scholar 

  12. John, G., Cleary, J.G., Witten, I.H.: A comparison of enumerative and adaptive codes. IEEE Trans. Inform. Theory 30(2, part 2), 306–315 (1984)

    Google Scholar 

  13. Daubechies, I.: Ten lectures on wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. (1992)

    Google Scholar 

  14. Donoho, D.L., Vetterli, M., DeVore, R.A., Daubechies, I.: Data compression and harmonic analysis. IEEE Trans. Inform. Theory 44(6), 2435–2476 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dutkay, D.E., Roysland, K.: Covariant representations for matrix-valued transfer operators. arXiv:math/0701453 (2007)

    Google Scholar 

  16. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  17. Green, P., MacDonald, L.: Colour Engineering: Achieving Device Independent Colour. Wiley, New York (2002)

    Google Scholar 

  18. Jaffard, S., Meyer, Y., Ryan, R.D.: Wavelets Tools for science & technology.. Society for Industrial and Applied Mathematics (SIAM). Philadelphia, PA, revised edition (2001)

    Google Scholar 

  19. Jorgensen, P.E.T.: Analysis and probability: wavelets, signals, fractals. Graduate Texts in Mathematics, vol. 234. Springer, New York (2006)

    Google Scholar 

  20. Jorgensen, P.E.T., Kornelson, K., Shuman, K.: Harmonic analysis of iterated function systems with overlap. J. Math. Phys. 48(8), 083511 (2007)

    Article  MathSciNet  Google Scholar 

  21. Jorgensen, P.E.T., Mohari, A.: Localized bases in L 2(0, 1) and their use in the analysis of Brownian motion. J. Approx. Theory 151(1), 20–41 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jorgensen, P.E.T., Song, M.-S.: Comparison of discrete and continuous wavelet transforms. Springer Encyclopedia of Complexity and Systems Science (2007)

    Google Scholar 

  23. Jorgensen, P.E.T., Song, M.-S.: Entropy encoding, hilbert space, and karhunen-loève transforms. J. Math. Phys. 48(10), 103503 (2007)

    Article  MathSciNet  Google Scholar 

  24. MacKay, D.J.C.: Information Theory, Inference and Learning Algorithms. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  25. Keyl, M.: Fundamentals of Quantum Information Theory. Phys. Rep. 369(5), 431–548 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rastislav L., Plataniotis, K.N.: Color Image Processing: Methods and Applications, 1 edn. CRC, Boca Raton, FL (2006)

    Google Scholar 

  27. Roman, S.: Introduction to Coding and Information Theory: Undergraduate Texts in Mathematics. Springer, New York (1997)

    Google Scholar 

  28. Lukac, R., Plataniotis, K.N., Venetsanopoulos, A.N.: Bayer pattern demosaicking using local-correlation approach. Computational science–ICCS 2004. Part IV, Lecture Notes in Comput. Sci. 3039, 26–33, Berlin, Springer (2004)

    Google Scholar 

  29. MacDonald, L. (Editor), Luo, M.R. (Editor): Colour Image Science: Exploiting Digital Media, 1 edn. Wiley, New York (2002)

    Google Scholar 

  30. Russ, J.C.: The image processing handbook, 5th edn. CRC, Boca Raton, FL (2007)

    MATH  Google Scholar 

  31. Salomon, D.: Data compression. The complete reference. 4th edn. With contributions by Giovanni Motta and David Bryant. Springer, London (2007)

    Google Scholar 

  32. Shannon C.E., Weaver W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana and Chicago (1998)

    Google Scholar 

  33. Skodras, A., Christopoulos, C., Ebrahimi, T.: Jpeg 2000 still image compression standard" ieee signal processing magazine. IEEE Signal process. Mag. 18, 36–58 (2001)

    Article  Google Scholar 

  34. Song, M.-S.: Wavelet image compression. In Operator theory, operator algebras, and applications, 414 Contemp. Math., 41–73. Amer. Math. Soc., Providence, RI, (2006)

    Google Scholar 

  35. Song, M.-S.: Entropy encoding in wavelet image compression. Representations, Wavelets and Frames A Celebration of the Mathematical Work of Lawrence Baggett, 293–311 (2008)

    Google Scholar 

  36. Usevitch, B.E.: A tutorial on modern lossy wavelet image compression: Foundations of jpeg 2000. IEEE Signal Process. Mag. 18, 22–35 (2001)

    Article  Google Scholar 

  37. Walker, J.S.: A Primer on Wavelets and Their Scientific Applications. Chapman & Hall, CRC (1999)

    Book  MATH  Google Scholar 

  38. Witten, I.H.: Adaptive text mining: inferring structure from sequences. J. Discrete Algorithms 2(2), 137–159 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Comm. ACM 30(6), 520–540 (1987)

    Article  Google Scholar 

Download references

Acknowledgements

The first named author was supported in part by a grant from the US NSF. Also first named author acknowledges partial support of the Swedish Foundation for International Cooperation in Research and Higher education (STINT) during his visits to Lund University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Palle E. T. Jorgensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jorgensen, P.E.T., Song, MS. (2012). Scaling, Wavelets, Image Compression, and Encoding. In: Åström, K., Persson, LE., Silvestrov, S. (eds) Analysis for Science, Engineering and Beyond. Springer Proceedings in Mathematics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20236-0_8

Download citation

Publish with us

Policies and ethics