Skip to main content

Experimental Models in Nanotoxicology

  • Chapter
  • First Online:

Abstract

The aim of toxicology is to characterise the potentially harmful effects of solid, liquid, or gaseous substances for humans. Having evaluated the hazards, and given the level of exposure to the substance, we can then assess the risks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

References

  1. K. Donaldson, V. Stone, C.L. Tran, et al.: Nanotoxicology. Occup. Environ. Med. 61, 727–728 (2004)

    Article  Google Scholar 

  2. European Commission: Statistical data on the use of laboratory animals in France in 2001. Working party for the preparation of the multilateral consultation of parties to the European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Council of Europe, GT 123 (2003)

    Google Scholar 

  3. J. Kreuter, D. Shamenkov, V. Petrov, et al.: Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood–brain barrier. J. Drug Target 10, 317–325 (2002)

    Article  Google Scholar 

  4. A. Takagi, A. Hirose, T. Nishimura, et al.: Induction of mesothelioma in p53\(+/-\) mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33, 105–116 (2008)

    Google Scholar 

  5. C.A. Conn, F.H.Y. Green, K.J. Nikula: Animal models of pulmonary infection in the compromised host: Potential usefulness for studying health effects of inhaled particles. Inhal. Toxicol. 12, 783–827 (2000)

    Article  Google Scholar 

  6. T.H. March, F.H.Y. Green, F.F. Hahn, et al.: Animal models of emphysema and their relevance to studies of particle-induced disease. Inhal. Toxicol. 12, 155–187 (2000)

    Article  Google Scholar 

  7. B.B. Moore, C.M. Hogaboam: Murine models of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L152–160 (2008)

    Article  Google Scholar 

  8. K.J. Nikula, F.H.Y. Green: Animal models of chronic bronchitis and their relevance to studies of particle-induced disease. Inhal. Toxicol. 12, 123–153 (2000)

    Article  Google Scholar 

  9. D.E. Bice, J. Seagrave, F.H.Y. Green: Animal models of asthma: Potential usefulness for studying health effects of inhaled particles. Inhal. Toxicol. 12, 829–862 (2000)

    Article  Google Scholar 

  10. K. Inoue, H. Takano, R. Yanagisawa, et al.: Effects of nanoparticles on antigen-related airway inflammation in mice. Respir. Res. 6, 106 (2005)

    Article  Google Scholar 

  11. K. Inoue, H. Takano, R. Yanagisawa, et al.: Effects of nanoparticles on cytokine expression in murine lung in the absence or presence of allergen. Arch. Toxicol. 80, 614–619 (2006)

    Article  Google Scholar 

  12. F. Alessandrini, H. Schulz, S. Takenaka, et al.: Effects of ultrafine carbon particle inhalation on allergic inflammation of the lung. J. Allergy Clin. Immunol. 117, 824–830 (2006)

    Article  Google Scholar 

  13. S.A. Evans, A. Al-Mosawi, R.A. Adams, et al.: Inflammation, edema, and peripheral blood changes in lung-compromised rats after instillation with combustion-derived and manufactured nanoparticles. Exp. Lung. Res. 32, 363–378 (2006)

    Article  Google Scholar 

  14. J. Pauluhn: Overview of testing methods used in inhalation toxicity: From facts to artifacts. Toxicol. Lett. 140141, 183–193 (2003)

    Article  Google Scholar 

  15. J. Pauluhn: Overview of inhalation exposure techniques: Strengths and weaknesses. Exp. Toxicol. Pathol. 57 (Suppl. 1), 111–128 (2005)

    Article  Google Scholar 

  16. K.E. Driscoll, D.L. Costa, G. Hatch, et al.: Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicol. Sci. 55, 24–35 (2000)

    Article  Google Scholar 

  17. D. Elgrabli, S. Abella-Gallart, O. Aguerre-Chariol, et al.: Effect of BSA on carbon nanotube dispersion for in vivo and in vitro studies. Nanotoxicology 1, 266–278 (2007)

    Article  Google Scholar 

  18. K. Donaldson, R. Aitken, L. Tran, et al.: Carbon nanotubes: A review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22 (2006)

    Article  Google Scholar 

  19. J.G. Li, W.X. Li, J.Y. Xu, et al.: Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ. Toxicol. 22, 415–421 (2007)

    Article  MATH  Google Scholar 

  20. A. Al Faraj, G. Lacroix, H. Alsaid, et al.: Longitudinal 3He and proton imaging of magnetite biodistribution in a rat model of instilled nanoparticles. Magn. Reson. Med. 59, 1298–1303 (2008)

    Article  Google Scholar 

  21. P. Cherukuri, C.J. Gannon, T.K. Leeuw, et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc. Natl. Acad. Sci. USA 103, 18882–18886 (2006)

    Article  ADS  Google Scholar 

  22. M.L. Schipper, N. Nakayama-Ratchford, C.R. Davis, et al.: A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat. Nanotechnol. 3, 216–221 (2008)

    Article  Google Scholar 

  23. Z. Liu, C. Davis, W. Cai, et al.: Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA 105, 1410–1415 (2008)

    Article  ADS  Google Scholar 

  24. A. Nemmar, P.H. Hoet, B. Vanquickenborne, et al.: Passage of inhaled particles into the blood circulation in humans. Circulation 105, 411–414 (2002)

    Article  Google Scholar 

  25. N.L. Mills, N. Amin, S.D. Robinson, et al.: Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am. J. Respir. Crit. Care Med. 173, 426–431 (2006)

    Article  Google Scholar 

  26. D. Elgrabli, M. Floriani, S. Abella-Gallart, et al.: Biodistribution and clearance of instilled carbon nanotubes in rat lung. Part. Fibre Toxicol. 5, 20 (2008)

    Article  Google Scholar 

  27. A. Al Faraj, K. Cieslar, G. Lacroix, et al.: In vivo imaging of carbon nanotube biodistribution using magnetic resonance imaging. Nano Lett. 9, 1023–1027 (2009)

    Article  ADS  Google Scholar 

  28. F. Blank, B. Rothen-Rutishauser, P. Gehr: Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens. Am. J. Respir. Cell. Mol. Biol. 36, 669–677 (2007)

    Article  Google Scholar 

  29. W. Lilienblum, W. Dekant, H. Foth, et al.: Alternative methods to safety studies in experimental animals: Role in the risk assessment of chemicals under the new European Chemicals Legislation (REACH). Arch. Toxicol. 82, 211–236 (2008)

    Article  Google Scholar 

  30. SCCP: Safety of nanomaterials in cosmetic products. Scientific Commitee on Consumer Products, European Commission (2007)

    Google Scholar 

  31. A. Nel, T. Xia, L. Madler, et al.: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)

    Article  ADS  Google Scholar 

  32. K. Million, F. Tournier, O. Houcine, et al.: Effects of retinoic acid receptor-selective agonists on human nasal epithelial cell differentiation. Am. J. Respir. Cell. Mol. Biol. 25, 744–750 (2001)

    Google Scholar 

  33. M. Vastag, G.M. Keseru: Current in vitro and in silico models of blood–brain barrier penetration: A practical view. Curr. Opin. Drug Discov. Dev. 12, 115–124 (2009)

    Google Scholar 

  34. J.G. Ayres, P. Borm, F.R. Cassee, et al.: Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential: A workshop report and consensus statement. Inhal. Toxicol. 20, 75–99 (2008)

    Article  Google Scholar 

  35. M.S. Ehrenberg, A.E. Friedman, J.N. Finkelstein, et al.: The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 30, 603–610 (2009)

    Article  Google Scholar 

  36. S. Val, S. Hussain, S. Boland, et al.: Carbon black and titanium dioxide nanoparticles induce pro-inflammatory response in bronchial epithelial cells: Need of multiparametric evaluation due to adsorption artefacts. Inhal. Toxicol. 21 (Suppl. 1), 115–122 (2009)

    Article  Google Scholar 

  37. L. Guo, A. Von Dem Bussche, M. Buechner, et al.: Adsorption of essential micronutrients by carbon nanotubes and the implications for nanotoxicity testing. Small 4, 721–727 (2008)

    Article  Google Scholar 

  38. C. Monteiller, L. Tran, W. MacNee, et al.: The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: The role of surface area. Occup. Environ. Med. 64, 609–615 (2007)

    Article  Google Scholar 

  39. N.A. Monteiro-Riviere, A.O. Inman, L.W. Zhang: Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharmacol. 234, 222–235 (2009)

    Article  Google Scholar 

  40. A. Kroll, M.H. Pillukat, D. Hahn, J. Schnekenburger: Current in vitro methods in nanoparticle risk assessment: Limitations and challenges. Eur. J. Pharm. Biopharm. 72, 370–377 (2009)

    Article  Google Scholar 

  41. F.Y. Bois, T. Smith, A. Gelman, et al.: Optimal design for a study of butadiene toxicokinetics in humans. Toxicol. Sci. 49, 213–224 (1999)

    Article  Google Scholar 

  42. T. Teorell: Kinetics of distribution of substances administered to the body. Archives Internationales de Pharmacodynamie et de Thérapie 57, 205–240 (1937)

    Google Scholar 

  43. K.B. Bischoff, R.L. Dedrick, D.S. Zaharko, et al.: Methotrexate pharmacokinetics. J. Pharmaceutical Sci. 60, 1128–1133 (1971)

    Google Scholar 

  44. A. Gelman, F.Y. Bois, J. Jiang: Physiological pharmacokinetic analysis using population modeling and informative prior distributions. J. Am. Statistical Assoc. 91, 1400–1412 (1996)

    Article  MATH  Google Scholar 

  45. S. Micallef, C. Brochot, F.Y. Bois: L’analyse statistique bayésienne de données toxicocinétiques. Environnement, Risque et Santé 4, 21–34 (2005)

    Google Scholar 

  46. A. Péry, C. Brochot, P. Hoet, et al.: Development of a physiologically-based kinetic model for 99mtechnetium labelled carbon nanoparticles inhaled by humans. Inhal. Toxicol. 21, 1099–1107 (2009)

    Article  Google Scholar 

  47. ICRP Publication 80: Radiation dose to patients from radiopharmaceuticals. International Commission on Radiological Protection. Annals of the ICRP 2 (3). Oxford, Pergamon Press (1999)

    Google Scholar 

  48. L.R. Williams, R.W. Leggett: Reference values for resting blood flow to organs of man. Clinical Physics and Physiological Measurement 10, 187–217 (1989)

    Article  ADS  Google Scholar 

  49. P. Lin, J.W. Chen, L.W. Chang, et al.: Computational and ultrastructural toxicology of a nanoparticle, Quantum Dot 705, in mice. Environ. Sci. Technol. 42, 6264–6270 (2008)

    Article  Google Scholar 

  50. H.A. Lee, T.L. Leavens, S.E. Mason, et al.: Comparison of quantum dot biodistribution with a blood-flow-limited physiologically based pharmacokinetic model. Nano Lett. 9, 794–799 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armelle Baeza-Squiban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Baeza-Squiban, A., Lacroix, G., Bois, F.Y. (2011). Experimental Models in Nanotoxicology. In: Houdy, P., Lahmani, M., Marano, F. (eds) Nanoethics and Nanotoxicology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20177-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20177-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20176-9

  • Online ISBN: 978-3-642-20177-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics