Skip to main content

Gradients and Regulatory Networks of Wnt Signalling in Hydra Pattern Formation

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 15))

Abstract

The Wnt/β-catenin pathway plays an important role in axis formation and axial patterning during metazoan development. Wnt genes are expressed around the blastopore of prebilaterian and bilaterian embryos and create a gradient of ligands governing the primary oral-aboral body axis. Although this polarised Wnt signalling along a primary body axis is a conserved property of metazoan development, the mechanisms governing localised Wnt expression and secretion are poorly understood. We study these questions in the freshwater polyp Hydra, a classical model system for the analysis of morphogenetic gradients and modelling of de novo pattern formation processes. New data emphasise the importance of gene regulatory networks for the formation of Wnt secreting signalling centres. It is proposed that a twist of transcriptional control and gradient formation was essential for the formation of Wnt signalling centres in metazoan axis formation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holstein TW (2012) The evolution of the Wnt pathway. Cold Spring Harb Perspect Biol (in press, doi: 10.1101/cshperspect.a007922)

    Google Scholar 

  2. Holstein TW, Watanabe H, Ozbek S (2011) Signaling pathways and axis formation in the lower metazoa. Curr Top Dev Biol 97:137–177

    Article  Google Scholar 

  3. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, Disbennett K, Pfannkoch C, Sumin N, Sutton GG, Viswanathan LD, Walenz B, Goodstein DM, Hellsten U, Kawashima T, Prochnik SE, Putnam NH, Shu S, Blumberg B, Dana CE, Gee L, Kibler DF, Law L, Lindgens D, Martinez DE, Peng J, Wigge PA, Bertulat B, Guder C, Nakamura Y, Ozbek S, Watanabe H, Khalturin K, Hemmrich G, Franke A, Augustin R, Fraune S, Hayakawa E, Hayakawa S, Hirose M, Hwang JS, Ikeo K, Nishimiya-Fujisawa C, Ogura A, Takahashi T, Steinmetz PR, Zhang X, Aufschnaiter R, Eder MK, Gorny AK, Salvenmoser W, Heimberg AM, Wheeler BM, Peterson KJ, Bottger A, Tischler P, Wolf A, Gojobori T, Remington KA, Strausberg RL, Venter JC, Technau U, Hobmayer B, Bosch TC, Holstein TW, Fujisawa T, Bode HR, David CN, Rokhsar DS, Steele RE (2010) The dynamic genome of Hydra. Nature 464:592–596

    Article  Google Scholar 

  4. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, Jurka J, Genikhovich G, Grigoriev IV, Lucas SM, Steele RE, Finnerty JR, Technau U, Martindale MQ, Rokhsar DS (2007) Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94

    Article  Google Scholar 

  5. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 55:97–115

    Article  Google Scholar 

  6. Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau U, von Haeseler A, Hobmayer B, Martindale MQ, Holstein TW (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  Google Scholar 

  7. Lee PN, Pang K, Matus DQ, Martindale MQ (2006) A WNT of things to come: evolution of Wnt signaling and polarity in cnidarians. Semin Cell Dev Biol

    Google Scholar 

  8. Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Ozbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330:186–199

    Article  Google Scholar 

  9. Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH (2007) Asymmetric developmental potential along the animal-vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol

    Google Scholar 

  10. Momose T, Derelle R, Houliston E (2008) A maternally localised Wnt ligand required for axial patterning in the cnidarian Clytia hemisphaerica. Development 135:2105–2113

    Article  Google Scholar 

  11. Momose T, Houliston E (2007) Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 5:e70

    Article  Google Scholar 

  12. Wikramanayake AH, Hong M, Lee PN, Pang K, Byrum CA, Bince JM, Xu R, Martindale MQ (2003) An ancient role for nuclear beta-catenin in the evolution of axial polarity and germ layer segregation. Nature 426:446–450

    Article  Google Scholar 

  13. De Robertis EM (2008) Evo-devo: variations on ancestral themes. Cell 132:185–195

    Article  Google Scholar 

  14. Niehrs C (2010) On growth and form: a Cartesian coordinate system of Wnt and BMP signaling specifies bilaterian body axes. Development 137:845–857

    Article  Google Scholar 

  15. Rentzsch F, Guder C, Vocke D, Hobmayer B, Holstein TW (2007) An ancient chordin-like gene in organizer formation of Hydra. Proc Natl Acad Sci U S A 104:3249–3254

    Article  Google Scholar 

  16. Chourrout D, Delsuc F, Chourrout P, Edvardsen RB, Rentzsch F, Renfer E, Jensen MF, Zhu B, de Jong P, Steele RE, Technau U (2006) Minimal ProtoHox cluster inferred from bilaterian and cnidarian Hox complements. Nature 442:684–687

    Article  Google Scholar 

  17. Technau U, Steele RE (2011) Evolutionary crossroads in developmental biology: cnidaria. Development

    Google Scholar 

  18. Guder C, Philipp I, Lengfeld T, Watanabe H, Hobmayer B, Holstein TW (2006a) The Wnt code: cnidarians signal the way. Oncogene 25:7450–7460

    Article  Google Scholar 

  19. Guder C, Pinho S, Nacak TG, Schmidt HA, Hobmayer B, Niehrs C, Holstein TW (2006b) An ancient Wnt-Dickkopf antagonism in Hydra. Development 133:901–911

    Article  Google Scholar 

  20. Browne EN (1909) The production of new hydranths in hydra by the insertion of small grafts. J Exp Zool 7:1–37

    Article  Google Scholar 

  21. Meinhardt H (2012) Modeling pattern formation in hydra: a route to understanding essential steps in development. Int J Dev Biol

    Google Scholar 

  22. Technau U, Cramer von Laue C, Rentzsch F, Luft S, Hobmayer B, Bode HR, Holstein TW (2000) Parameters of self-organization in Hydra aggregates. Proc Natl Acad Sci U S A 97:12127–12131

    Article  Google Scholar 

  23. Nakamura Y, Tsiairis CD, Ozbek S, Holstein TW (2011) Autoregulatory and repressive inputs localize Hydra Wnt3 to the head organizer. Proc Natl Acad Sci U S A 108:9137–9142

    Article  Google Scholar 

  24. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, von Laue CC, Snyder P, Rothbacher U, Holstein TW (2000) WNT signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407:186–189

    Article  Google Scholar 

  25. Philipp I, Aufschnaiter R, Ozbek S, Pontasch S, Jenewein M, Watanabe H, Rentzsch F, Holstein TW, Hobmayer B (2009) Wnt/beta-catenin and noncanonical Wnt signaling interact in tissue evagination in the simple eumetazoan Hydra. Proc Natl Acad Sci U S A 106:4290–4295

    Article  Google Scholar 

  26. Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132:2907–2916

    Article  Google Scholar 

  27. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  Google Scholar 

  28. Meinhardt H (2004a) Different strategies for midline formation in bilaterians. Nat Rev Neurosci 5:502–510

    Article  Google Scholar 

  29. Meinhardt H (2004b) Models for the generation of the embryonic body axes: ontogenetic and evolutionary aspects. Curr Opin Genet Dev 14:446–454

    Article  Google Scholar 

  30. MacWilliams HK (1983a) Hydra transplantation phenomena and the mechanism of hydra head regeneration. I. Properties of the head inhibition. Dev Biol 96:217–238

    Article  Google Scholar 

  31. MacWilliams HK (1983b) Hydra transplantation phenomena and the mechanism of Hydra head regeneration. II. Properties of the head activation. Dev Biol 96:239–257

    Article  Google Scholar 

  32. Meinhardt H (1993) A model for pattern formation of hypostome, tentacles, and foot in hydra: how to form structures close to each other, how to form them at a distance. Dev Biol 157:321–333

    Article  Google Scholar 

  33. Gee L, Hartig J, Law L, Wittlieb J, Khalturin K, Bosch TC, Bode HR (2010) Beta-catenin plays a central role in setting up the head organizer in hydra. Dev Biol 340:116–124

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas W. Holstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Holstein, T.W. (2013). Gradients and Regulatory Networks of Wnt Signalling in Hydra Pattern Formation. In: Capasso, V., Gromov, M., Harel-Bellan, A., Morozova, N., Pritchard, L. (eds) Pattern Formation in Morphogenesis. Springer Proceedings in Mathematics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20164-6_3

Download citation

Publish with us

Policies and ethics