Skip to main content

From Hydra to Vertebrates: Models for the Transition from Radial- to Bilateral-Symmetric Body Plans

  • Conference paper
  • First Online:
Pattern Formation in Morphogenesis

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 15))

Abstract

The development of a higher organism needs many coupled pattern-forming reactions. Crucial are interactions in which a local self-enhancing reaction is coupled to an antagonistic reaction of longer range. Using the pattern of head, tentacle and foot formation in the small freshwater polyp hydra as a model system it is shown (1) how polar pattern can emerge; (2) how a polar pattern can be maintained during substantial growth; (3) how structures next to each other can be generated and (4) how two organizing regions can be forced to appear at a maximum distance from each other at the two terminal poles. The understanding of the organization along the single axis of the radial-symmetric hydra was a key to understand the evolution of bilateral-symmetric body plans. Many observations can be explained under the assumption that the body of hydra-like ancestors evolved into the brain of higher organisms, that generation of a midline was a subtle patterning process for which evolution has found different solutions, that the ancestral hydra-type organizer became the organizer for the AP axis in higher organisms, and that the trunk is a later evolutionary addition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bode HR (2003) Head regeneration in Hydra. Dev Dyn 226:225–236

    Article  Google Scholar 

  2. Bosch TCG (2007) Why polyps regenerate and we don’t: towards a cellular and molecular framework for Hydra regeneration. Dev Biol 303:421–433

    Article  Google Scholar 

  3. Gierer A (1977) Biological features and physical concepts of pattern formation exemplified by hydra. Curr Top Dev Biol 11:17–59

    Article  Google Scholar 

  4. Holstein TW, Hobmayer E, Technau U (2003) Cnidarians: an evolutionarily conserved model system for regeneration? Dev Dyn 226:257–267

    Article  Google Scholar 

  5. Gierer A, Berking S, Bode H, David CN, Flick K, Hansmann G, Schaller H, Trenkner E (1972) Regeneration of hydra from reaggregated cells. Nat New Biol 239:98–101

    Article  Google Scholar 

  6. Browne EN (1909) The production of new hydrants in Hydra by insertion of small grafts. J Exp Zool 7:1–23

    Article  Google Scholar 

  7. Broun M, Gee L, Reinhardt B, Bode HR (2005) Formation of the head organizer in hydra involves the canonical Wnt pathway. Development 132:2907–2916

    Article  Google Scholar 

  8. Hobmayer B, Rentzsch F, Kuhn K, Happel CM, Cramer von Laue C, Snyder P, Rothbacher U, Holstein TW (2000) Wnt signalling molecules act in axis formation in the diploblastic metazoan Hydra. Nature 407:186–189

    Article  Google Scholar 

  9. Lengfeld T, Watanabe H, Simakov O, Lindgens D, Gee L, Law L, Schmidt HA, Özbek S, Bode H, Holstein TW (2009) Multiple Wnts are involved in Hydra organizer formation and regeneration. Dev Biol 330:186–199

    Article  Google Scholar 

  10. Meinhardt H (2002) The radial-symmetric hydra and the evolution of the bilateral body plan: an old body became a young brain. Bioessays 24:185–191

    Article  Google Scholar 

  11. Meinhardt H (1989) Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development (Supplement 1989):169–180

    Google Scholar 

  12. Chen G, Handel K, Roth S (2000) The maternal nf-kappa b/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development 127:5145–5156

    Google Scholar 

  13. Meinhardt H (2004) Different strategies for midline formation in bilaterians. Nat Rev Neurosci 5:502–510

    Article  Google Scholar 

  14. Gierer A, Meinhardt H (1972) A theory of biological pattern formation. Kybernetik 12:30–39

    Article  Google Scholar 

  15. Meinhardt H (1982) Models of biological pattern formation. Academic, London (available at http://www.eb.tuebingen.mpg.de/meinhardt/82-book)

    Google Scholar 

  16. Meinhardt H (2008) Models of biological pattern formation: from elementary steps to the organization of embryonic axes. Curr Top Dev Biol 81:1–63

    Article  Google Scholar 

  17. Turing A (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237:37–72

    Article  Google Scholar 

  18. Shimizu H, Fujisawa T (2003) Peduncle of Hydra and the heart of higher organisms share a common ancestral origin. Genesis 36:182–186

    Article  Google Scholar 

  19. Meinhardt H (2006) Primary body axes of vertebrates: generation of a near-Cartesian coordinate system and the role of Spemann-type organizer. Dev Dyn 235:2907–2919

    Article  Google Scholar 

  20. Duboc V, Rottinger E, Besnardeau L, Lepage T (2004) Nodal and bmp2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6:397–410

    Article  Google Scholar 

  21. Schier AF (2009) Nodal morphogens. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003459

  22. Huang X, Dong Y, Zhao J (2004) HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci U S A 101:4848–4853

    Article  Google Scholar 

  23. Meinhardt H (1995) Growth and patterning – dynamics of stripe formation. Nature 376:722–723

    Article  Google Scholar 

  24. Hörstadius S (1939) The mechanics of sea-urchin development studied by operative methods. Biol Rev 14:132–179

    Article  Google Scholar 

  25. Müller WA, Plickert G (1982) Quantitative analysis of an inhibitory gradient field in the hydrozoan stolon. Wilhelm Roux Arch 191:56–63

    Article  Google Scholar 

  26. Meinhardt H (1993) A model for pattern-formation of hypostome, tentacles, and foot in hydra: how to form structures close to each other, how to form them at a distance. Dev Biol 157:321–333

    Article  Google Scholar 

  27. Bode PM, Awad TA, Koizumi O, Nakashima Y, Grimmelikhuijzen CJP, Bode HR (1988) Development of the two-part pattern during regeneration of the head in hydra. Development 102:223–235

    Google Scholar 

  28. Technau U, Holstein TW (1995) Head formation in hydra is different at apical and basal levels. Development 121:1273–1282

    Google Scholar 

  29. Meinhardt H (2009) The algorithmic beauty of sea shells, 4th enlarged edn (with programs on CD). Springer, Heidelberg/New York

    Google Scholar 

  30. Wilby OK, Webster G (1970) Experimental studies on axial polarity in hydra. J Embryol Exp Morphol 24:595–613

    Google Scholar 

  31. Meinhardt H, Gierer A (1980) Generation and regeneration of sequences of structures during morphogenesis. J Theor Biol 85:429–450

    Article  MathSciNet  Google Scholar 

  32. Holley SA, Jackson PD, Sasai Y, Lu B, De Robertis EM, Hoffmann FM, Ferguson EL (1995) The Algorithmic Beauty of Sea Shells. A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and Chordin. Nature 376:249–253

    Article  Google Scholar 

  33. Schubert M, Holland LZ, Stokes MD, Holland ND (2001) Three amphioxus Wnt genes (amphiwnt3, amphiwnt5, and amphiwnt6) associated with the tail bud: the evolution of somitogenesis in chordates. Dev Biol 240:262–273

    Article  Google Scholar 

  34. Reinhardt B, Broun M, Blitz IL, Bode HR (2004) Hybmp5-8b, a BMP5-8 orthologue, acts during axial patterning and tentacle formation in Hydra. Dev Biol 267:43–59

    Article  Google Scholar 

  35. Wacker SA, Jansen HJ, McNulty CL, Houtzager E, Durston AJ (2004) Timed interactions between the Hox expressing non-organiser mesoderm and the Spemann organiser generate positional information during vertebrate gastrulation. Dev Biol 268:207–219

    Article  Google Scholar 

  36. Ben-Zvi D, Shilo BZ, Fainsod A, Barkai N (2008) Scaling of the BMP activation gradient in Xenopus embryos. Nature 453:1205–1211

    Article  Google Scholar 

  37. Palmeirim I, Henrique D, Ish-Horowicz D, Pourquie O (1997) Avian hairy gene-expression identifies a molecular clock linked to vertebrate segmentation and somitogenesis. Cell 91:639–648

    Article  Google Scholar 

  38. Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/β-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201

    Google Scholar 

  39. Nordström U, Jessell TM, Edlund T (2002) Progressive induction of caudal neural character by graded Wnt signaling. Nat Neurosci 5:525–532

    Article  Google Scholar 

  40. Ober EA, Schulte-Merker S (1999) Signals from the yolk cell induce mesoderm, neuroectoderm, the trunk organizer, and the notochord in zebrafish. Dev Biol 215:167–181

    Article  Google Scholar 

  41. Meinhardt H (2001) Organizer and axes formation as a self-organizing process. Int J Dev Biol 45:177–188

    Google Scholar 

  42. Arendt D, Nübler-Jung K (1994) Inversion of dorsoventral axis. Nature 371:26

    Article  Google Scholar 

  43. Levin M, Palmer AR (2007) Left-right patterning from the inside out: widespread evidence for intracellular control. Bioessays 29:271–287

    Article  Google Scholar 

  44. Raya A, Izpisúa Belmonte JC (2006) Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nat Rev Genet 7:283–293

    Article  Google Scholar 

  45. Vandenberg LN, Levin M (2009) Perspectives and open problems in the early phases of left-right patterning. Semin Cell Dev Biol 20:456–463

    Article  Google Scholar 

  46. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motorprotein. Cell 95:829–837

    Article  Google Scholar 

  47. Nakamura T, Mine N, Nakaguchi E, Mochizuki A, Yamamoto M, Yashiro K, Meno C, Hamada M (2006) Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11:495–504

    Article  Google Scholar 

  48. Meinhardt H (1978) Space-dependent cell determination under the control of a morphogen gradient. J Theor Biol 74:307–321

    Article  Google Scholar 

  49. Nieuwkoop PD (1952) Activation and organization of the central nervous system in amphibians. III Synthesis of a new working hypothesis. J Exp Zool 120:83–108

    Article  Google Scholar 

  50. Duboule D (2007) The rise and fall of Hox gene clusters. Development 134:2549–2560

    Article  Google Scholar 

  51. Keller R (2005) Cell migration during gastrulation. Curr Opin Cell Biol 17:533–541

    Article  Google Scholar 

  52. Rentzsch F, Guder C, Vocke D, Hobmayer B, Holstein TW (2007) An ancient Chordin-like gene in organizer formation of Hydra. Proc Natl Acad Sci U S A 104:3249–3254

    Article  Google Scholar 

  53. Keynes RJ, Stern CD (1988) Mechanisms of vertebrate segmentation. Development 103:413–429

    Google Scholar 

  54. Stern CD, Keynes RJ (1987) Interaction between somite cells: the formation and maintenance of segment boundaries in the chick embryo. Development 99:261–272

    Google Scholar 

  55. Keynes RJ, Stern CD (1984) Segmentation in the vertebrate nervous system. Nature 310:786–789

    Article  Google Scholar 

  56. Cooke J (1981) The problem of periodic patterns in embryos. Philos Trans R Soc Lond B Biol Sci 295:509–524

    Article  Google Scholar 

  57. Dubrulle J, McGrew MJ, Pourquie O (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell 106:219–232

    Article  Google Scholar 

  58. Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J Theor Biol 58:455–476

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Meinhardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meinhardt, H. (2013). From Hydra to Vertebrates: Models for the Transition from Radial- to Bilateral-Symmetric Body Plans. In: Capasso, V., Gromov, M., Harel-Bellan, A., Morozova, N., Pritchard, L. (eds) Pattern Formation in Morphogenesis. Springer Proceedings in Mathematics, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20164-6_17

Download citation

Publish with us

Policies and ethics