Skip to main content

Tepui Peatlands: Age Record and Environmental Changes

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 217))

Abstract

Peat deposits in tepui environment have been earlier described in the eastern part of the Venezuelan Guayana Highlands, focusing on peat dating and pollen analysis. The present study deals with the description, characterization, and dating of peat deposits on tepui and dome summits in the western Guayana Highlands, in contact with the Venezuelan Amazon Basin. No new peat data have been collected in these areas since our exploration missions in the early 1990s. This chapter focuses on the description of the sampling sites, the carbon-14 dating of selected peat layers, and the interpretation of the peat age record with respect to peat formation and environmental changes during the Holocene. Calibrated calendar ages stretch the initiation of peat accumulation back to ca 8400 calbp. Peat has been formed during the major part of the Holocene, but peat deposition was not constant. There are often important time gaps between consecutive dated peat layers, which are as large as 2000–4000 14C years. These gaps reflect depositional hiatuses that can result either from the interruption of peat accumulation because of climate change or from the truncation/removal of the peat cover through sliding. As a consequence, peat profiles are often polygenetic, resulting from more than one single accumulation phase. Ongoing (pseudo-)karstic activity provided periodically new depressions for water to concentrate and organic material to accumulate, so that peat inception was more diachronic than cyclic. There is a clear difference in the peat age–depth pattern before and after ca 4000 bp. The period around 4000 bp seems to be a time threshold in peat formation of broader significance in the regional context (Gran Sabana) as well as in the continental context (South America and Africa). Peat formation reflects a multiple environmental causality context, including climatic, vegetational, geodynamic, and hydrodynamic factors that induce variations in the peat cover. This makes it difficult to infer strict climatic changes at regional level and distinguish them from local-forcing causes, and calls for a multicriteria interpretation model to disentangle the history of the peat deposits in the Guayana Highlands.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Beven K, Lawson A, McDonald A (1978) A landslip/debris flow in Bilsdale, North York moors, September 1976. Earth Surf Process 3:407–419

    Article  CAS  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millenial-scale cycle in North Atlantic Holocene and Glacial climates. Science 278:1257–1266

    Article  CAS  Google Scholar 

  • Chimner RA, Karberg JM (2008) Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires and Peat 3: Art. 4. http://www.mires-and-peat.net/

  • D’Amore DV, Lynn WC (2002) Classification of forested Histosols in Southeast Alaska. Soil Sci Soc Am J 66:554–562

    Article  Google Scholar 

  • Dehling H, Van der Plicht J (1993) Statistical problems in calibrating radiocarbon dates. Radiocarbon 35(1):239–244

    Google Scholar 

  • Dykes AP, Kirk KJ (2006) Slope instability and mass movements in peat deposits. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam, pp 377–406

    Chapter  Google Scholar 

  • Dykes AP, Warburton J (2007) Mass movements in peat: a formal classification scheme. Geomorphology 86(1–2):73–93

    Article  Google Scholar 

  • Dykes AP, Gunn J, Convery (née Kirk) KJ (2008) Lanslides in blanket peat at Cuilcagh Mountain, northwest Ireland. Geomorphology 102(3–4):325–340

    Article  Google Scholar 

  • Eijkelkamp (1989) User manual for “Wardenaar-peatsampler”. Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands

    Google Scholar 

  • Fölster H (1992) Holocene autochthonous forest degradation in southeast Venezuela. In: Goldhammer JG (ed) Tropical forests in transition. Birkhäusser, Berlin, pp 25–44

    Chapter  Google Scholar 

  • Galán C (1992) El clima del macizo del Chimantá. In: Huber O (ed) El macizo del Chimantá, Escudo de Guayana, Venezuela. Un ensayo ecológico tepuyano. Oscar Todtmann Editores, Caracas, pp 37–52

    Google Scholar 

  • Gorzula S, Huber O (1992) Consideraciones finales. In: Huber O (ed) El macizo del Chimantá, Escudo de Guayana, Venezuela. Un ensayo ecológico tepuyano. Oscar Todtmann Editores, Caracas, pp 325–330

    Google Scholar 

  • Gröger A, Huber O (2007) Rock outcrop habitats in the Venezuelan Guayana lowlands: their main vegetation types and floristic components. Rev Bras Bot 30(4):599–609

    Article  Google Scholar 

  • Holden J (2006) Peatland hydrology. In: Martini IP, Martinez-Cortizas A, Chesworth W (eds) Peatlands: evolution and records of environmental and climate changes, vol 9, Developments in earth surface processes. Elsevier, Amsterdam, pp 319–346

    Chapter  Google Scholar 

  • Huber O (1988) Guayana Highlands versus Guayana Lowlands, a reappraisal. Taxon 37:595–614

    Article  Google Scholar 

  • Huber O (1992) El macizo del Chimantá: el área de estudio y su exploración. In: Huber O (ed) El macizo del Chimantá, Escudo de Guayana, Venezuela. Un ensayo ecológico tepuyano. Oscar Todtmann Editores, Caracas, pp 23–36

    Google Scholar 

  • Huber O, García P (2011) The Venezuelan Guayana region and the study areas: geo-ecological characteristics. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana highlands, Venezuela, Chap. 3. Springer, Heidelberg

    Google Scholar 

  • Immirzi CP, Maltby E, Clymo RS (1992) The global status of peatlands and their role in carbon cycling. Report 11, Friends of the Earth. London

    Google Scholar 

  • Marchant R, Hooghiemstra H (2004) Rapid environmental change in African and South American tropics around 4000 years before present: a review. Earth Sci Rev 66:217–260

    Article  Google Scholar 

  • Meadows ME (1988) Late Quaternary peat accumulation in southern Africa. CATENA 15:459–472

    Article  CAS  Google Scholar 

  • Medina E, Cuevas E, Huber O (2011) Origin of organic matter leading to peat formation in the southeastern Guayana uplands and highlands. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela, Chap. 8. Springer, Heidelberg

    Google Scholar 

  • Mook WG, Streurman HJ (1983) Physical and chemical aspects of radiocarbon dating. In: Mook WG, Waterbolk HT (eds) Proceedings of the Groningen Conference on 14C and Archaeology, PACT Publication 8, pp 31–55

    Google Scholar 

  • Mook WG, Waterbolk HT (1985) Radiocarbon dating, vol 3, Handbooks for archaeologists. European Science Foundation, Strasbourg

    Google Scholar 

  • Nogué S, Rull V, Montoya E, Huber O, Vegas-Vilarrúbia T (2009) Paleoecology of the Guayana Highlands (northern South America): Holocene pollen record from the Eruoda-tepui, in the Chimantá massif. Palaeogeogr Palaeoclimatol Palaeoecol 281:165–173

    Article  Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, Van der Plicht J, Weyhenmeyer CE (2004) IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46(3):1029–1058

    CAS  Google Scholar 

  • Rull V (1991) Contribución a la paleoecología de Pantepui y la Gran Sabana (Guayana Venezolana): clima, biogeografía y ecología. Scientia Guaianae 2, CVG-EDELCA, Caracas

    Google Scholar 

  • Rull V (2004) An evaluation of the Lost World and the vertical displacement hypotheses in the Chimantá Massif, Venezuelan Guayana. Glob Ecol Biogeogr 13:141–148

    Article  Google Scholar 

  • Rull V (2005) Vegetation and environmental constancy in the Neotropical Guayana Highlands during the last 6000 years? Rev Palaeobot Palynol 135:205–222

    Article  Google Scholar 

  • Rull V, Schubert C (1989) The Little Ice Age in the tropical Venezuelan Andes. Acta Cient Venez 40(1):71–73

    Google Scholar 

  • Schargel R, García P, Jiménez D (2011) Laboratory methods for characterization of peat materials. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela, Chap. 5. Springer, Heidelberg

    Google Scholar 

  • Schubert C, Fritz P (1985) Radiocarbon ages of peat, Guayana Highlands (Venezuela). Some paleoclimatic implications. Naturwissenschaften 72:427–429

    Article  CAS  Google Scholar 

  • Schubert C, Fritz P, Aravena R (1994) Late Quaternary paleoenvironmental studies in the Gran Sabana (Venezuelan Guayana Shield). Quatern Int 21:81–90

    Article  Google Scholar 

  • Steyermark JA, Dunsterville GCK (1980) The lowland floral element of the summit of Cerro Guaiquinima and other cerros of the Guayana Highlands of Venezuela. J Biogeogr 7:285–303

    Article  Google Scholar 

  • Van der Plicht J (1993) The Groningen radiocarbon calibration program. Radiocarbon 35(1):231–237

    Google Scholar 

  • Van der Plicht J (2004) Radiocarbon calibration – past, present and future. Nucl Instrum Methods Phys Res B 223–224:353–358

    Article  Google Scholar 

  • Van der Plicht J (2007) WinCal25. The Groningen radiocarbon calibration program. Center for Isotope Research (CIO), University of Groningen, The Netherlands

    Google Scholar 

  • Van der Plicht J, Hogg A (2006) A note on reporting radiocarbon. Quat Geochronol 1:237–240

    Article  Google Scholar 

  • Van der Plicht J, Mook WG (1987) Automatic radiocarbon calibration: illustrative examples. Palaeohistoria 29:173–182

    Google Scholar 

  • Van der Plicht J, Mook WG (1989) Calibration of radiocarbon ages by computer. Radiocarbon 31(3):805–816

    Google Scholar 

  • Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark B, Bradley R (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Zinck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zinck, J.A., García, P., van der Plicht, J. (2011). Tepui Peatlands: Age Record and Environmental Changes. In: Zinck, J., Huber, O. (eds) Peatlands of the Western Guayana Highlands, Venezuela. Ecological Studies, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20138-7_7

Download citation

Publish with us

Policies and ethics