Skip to main content

Latin America Echinoderm Biodiversity and Biogeography: Patterns and Affinities

  • Chapter
  • First Online:
Echinoderm Research and Diversity in Latin America

Abstract

We investigated the current patterns of diversity by country and by class of echinoderms, and analyzed their biogeographical, depth, and habitat or substratum affinities, using the database of the appendix of this book. Traditionally, the area has been divided into five biogeographical Regions and nine Provinces that cover a wide climate range. Currently, the echinoderm fauna of Latin America and Canary islands is constituted by 1,539 species, with 82 species of Crinoidea, 392 species of Asteroidea, 521 species of Ophiuroidea, 242 species of Echinoidea and 302 species of Holothuroidea. Species richness is highly variable among the different countries. The number of species for the countries is highly dependent on its coast length. The echinoderm fauna of the Panamic, Galápagos and the Chilean regions are biogeographically related. Other regions that are closely related are the Caribbean, West Indian, Lusitania and Brazilian. Cosmopolitan species are an important component in all the regions. Affinities between faunas are a consequence of the combination of climatic and trophic factors, connectivity as a function of distance, currents patterns and historical processes. Moreover, different environmental factors would be responsible for the faunal composition and species distribution at different spatial scales. The bathymetrical distribution of the echinoderm classes and the species richness varies according to the depth range and the ocean. Most species occurred at depths between 20 and 200 m. The Caribbean-Atlantic regions are richest in shallow depths, while the Pacific coast has higher values in deeper waters. The domination of each class in each substrate and habitat categories also varies differentially along each coast.

Resumen

Se investigan los patrones actuales de la diversidad por país y por clase de equinodermos, y se analizan sus afinidades biogeográficas, distribución batimétrica, y por tipo de hábitat o sustrato, usando la base de datos del apéndice de este libro. Tradicionalmente, el área ha sido dividida en cinco regiones biogeográficas con nueve provincias que cubren un amplio rango de climas. Actualmente, la fauna de equinodermos de Latinoamérica y las islas Canarias está constituida por 1,539 especies, 82 especies de Crinoidea, 392 especies de Asteroidea, 521 especies de Ophiuroidea, 242 especies de Echinoidea y 302 especies de Holothuroidea. La riqueza de especies es muy variable entre los diferentes países, sin embargo, el número de especies es altamente dependiente de la longitud de costa. Las faunas de equinodermos de las regiones Panámeña, de Galápagos y Chilena están estrechamente relacionadas. Otras regiones altamente relacionadas son la Caribeña, Indias Orientales, Lusitanica y la Brasileña. Las especies cosmopolitas son un componente importante en todas las regiones. Las afinidades entre las faunas son una consecuencia de la combinación de factores climáticos y tróficos, de la conectividad en función de la distancia, de las corrientes marinas y de procesos históricos. Más aún, diferentes factores ambientales pueden ser responsables de la composición de la fauna y la distribución de las especies a diferentes escalas espaciales. La distribución batimétrica de las clases de equinodermos y la riqueza de especies varían de acuerdo con la profundidad y el océano. La mayoría de las especies se encuentran entre los 20 y los 200 m, siendo la región Caribe-Atlántica la más rica en profundidades someras, mientras la región Pacífica presenta una mayor riqueza en aguas más profundas. La dominancia de cada clase en cada tipo de sustrato y hábitat varía también en cada costa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarado JJ (2011) Echinoderm diversity from the Caribbean Province. Mar Biodiv 41:261–285

    Article  Google Scholar 

  • Alvarado JJ, Cortés J (2004) The state of knowledge on echinoderms of Costa Rica and Central America. In: Heinzeiller T, Nebelsick JH (eds) Echinoderms: München. Proceedings of the 11th international Echinoderm conference. Taylor and Francis Group, London, pp 149–155

    Google Scholar 

  • Alvarado JJ, Solís-Marín FA, Ahearn C (2008) Equinodermos (Echinodermata) del Caribe Centroamericano. Rev Biol Trop 56(Suppl 3):37–55

    Google Scholar 

  • Alvarado JJ, Solis-Marin FA, Ahearn C (2010) Echinoderms (Echinodermata) diversity off Central America Pacific. Mar Biodiv 40:45–56

    Article  Google Scholar 

  • Barry JP, Dayton PK (1991) Physical heterogeneity and the organization of marine communities. In: Kolasa K, Pickett STA (eds) Ecological heterogeneity. Springer, New York, pp 270–320

    Chapter  Google Scholar 

  • Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Briggs JC (1995) Global biogeography. Elsevier, Amsterdam

    Google Scholar 

  • Brown JH, Lomolino MV (1998) Biogeography. Sinauer Associates, Sunderland

    Google Scholar 

  • Clark AM, Downey ME (1992) Starfishes of the Atlantic. Chapman & Hall, London

    Google Scholar 

  • Drouin G, Himmelman J, Béland T (1985) Impact of tidal salinity fluctuations on echinoderm and mollusc populations. Can J Zool 63:1377–1387

    Article  Google Scholar 

  • Dumont CP, Himmelman JH, Russell MP (2004) Sea urchin mass mortality associated with algal debris from ice scour. In: Heinzeiller T, Nebelsick JH (eds) Echinoderms: München. Proceedings of the 11th international Echinoderm conference. Taylor and Francis Group, London, pp 177–182

    Google Scholar 

  • Ebert TA (1983) Recruitment in Echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm studies, vol I. Balkelma, Rotterdam, pp 169–203

    Google Scholar 

  • Entrambasaguas L, Pérez-Ruzafa A, García-Charton JA, Stobart B, Bacallado JJ (2008) Abundance, spatial distribution and habitat relationships of echinoderms in the Cabo Verde Archipelago (eastern Atlantic). Mar Fresh Res 59:477–488

    Article  Google Scholar 

  • Hagen N, Mann K (1992) Functional response of the predators American lobster Homarus americanus and Atlantic wolf fish Anarhichas lupus to increasing numbers of the green sea uchin Strongylocentrotus droebachinesis. J Exp Mar Biol Ecol 159:89–112

    Article  Google Scholar 

  • Hasan MH (2005) Destruction of a Holothuria scabra population by overfishing at Abu Rhamada Island in the Red Sea. Mar Environ Res 60:489–511

    Article  PubMed  CAS  Google Scholar 

  • Hengeveld R (1990) Dynamic biogeography. Cambridge University Press, Cambridge

    Google Scholar 

  • Hereu B, Zabala M, Linares C, Sala E (2004) Temporal and spatial variability in settlements of the sea urchin Paracentrotus lividus (Lamarck) in the NW Mediterranean. Mar Biol 144:1011–1018

    Article  Google Scholar 

  • Hernández JC, Clemente S, Girard D, Pérez-Ruzafa A, Brito A (2010) Effect of temperature on settlement and postsettlement survival in a barrens-forming sea Urchin. Mar Ecol Prog Ser 413:69–80

    Article  Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of Biodiversity and Biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73:1943–1967

    Article  Google Scholar 

  • Longhurst AR (1998) Ecological geography of the sea. Academic Press, San Diego

    Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T, Caverhill C (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Article  Google Scholar 

  • Maluf LY (1988a) Composition and distribution of the Central eastern Pacific echinoderms. Nat Hist Mus L A County Tech Rep 2:1–242

    Google Scholar 

  • Maluf LY (1988b) Biogeography of the central eastern shelf echinoderms. In: Burke RD, Mlademov PV, Lambert P, Parsley RL (eds) Echinoderm biology. AA Balkema, Rotterdam, pp 389–398

    Google Scholar 

  • Maluf LY (1991) Echinoderm fauna of the Galápagos Islands. In: James MJ (ed) Galápagos marine invertebrates: taxonomy, biogeography and evolution in Darwin’s islands. Plenum Press, New York, pp 345–367

    Google Scholar 

  • Menge BA (1992) Community regulation: under what conditions are bottom-up factors important on rocky shores? Ecology 73:755–765

    Article  Google Scholar 

  • Miloslavich P, Díaz JM, Klein PE, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjan A, Ortiz M (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS ONE 5:e11916. doi:10.1371/journal.pone.0011916

    Article  PubMed  Google Scholar 

  • Miloslavich P, Klein E, Díaz JM, Hernández CE, Bigatti G, Campos L, Artigas F, Castillo J, Penchaszadeh PE, Neill PE, Carranza A, Retana MV, Díaz de Astarloa JM, Lewis M, Yorio P, Piriz ML, Rodríguez D, Yoneshigue-Valentin Y, Gamboa L, Martín A (2011) Marine biodiversity in the Atlantic and Pacific Coasts of South America: knowledge and gaps. PLoSONE 6:e14631. doi:10.1371/journal.pone.0014631

  • Pérez-Ruzafa A, López-Ibor A (1988) Echinoderm fauna from south-western Mediterranean. Biogeographic relationships. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. AA Balkema, Rotterdam, pp 355–362

    Google Scholar 

  • Pérez-Ruzafa A, Entrambasaguas L, Bacallado JJ (1999) Fauna de equinodermos (Echinodermata) de los fondos rocosos infralitorales del archipiélago de Cabo Verde. Rev Acad Canaria Cien 11:43–62

    Google Scholar 

  • Pérez-Ruzafa A, Entrambasaguas L, García Charton JA, Bacallado JJ, Marcos C (2003) Spatial relationships of the echinoderm fauna of Cabo Verde islands: A multi-scale approach. In: Féral JP, David B (eds) Echinoderm Research 2001. Sweets & Zeitlinger, Lisse, pp 31–39

    Google Scholar 

  • Pfister CA, Bradbury A (1996) Harvesting red sea urchins: recent effects and future predictions. Ecol Appl 6:298–551

    Article  Google Scholar 

  • Price ARG, Keeeling MJ, O’Callaghan CJ (1999) Ocean-scale patterns of ‘biodiversity’ of Atlantic asteroids determined from taxonomic distinctness and other measures. Biol J Lin Soc 66:187–203

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Sala E (1997) Fish predators and scavengers of the sea urchin Paracentrotus lividus in protected areas of the north-west Mediterranean Sea. Mar Biol 129:531–539

    Article  Google Scholar 

  • Steele DH (1983) Marine ecology and zoogeography. In: South GR (ed) Biogeography and ecology of the Island of Newfoundland. Junk Publishers, The Hague, pp 421–465

    Google Scholar 

  • Stöhr S, O’Hara TD, Thuy B (2012) Global diversity of Brittle Stars (Echinodermata: Ophiuroidea). PLoS ONE 3:e31940. doi:10.1371/journal.pone.0031940

  • Taeger M, Lazarus D (2010) VLIZ maritime boundaries. Mus Natur, Berlin. Geodatabase http://www.vliz.be/vmdcdata/marbound/download.php

  • Tegner MJ, Dayton PK (1981) Population structure, recruitment and mortality of two sea urchins (Strongylocentrotus franciscanus and S. purpuratus) in a kelp forest. Mar Ecol Prog Ser 5:255–268

    Article  Google Scholar 

  • Tyler PA, Young CM, Clarke A (2000) Temperature and pressure tolerances of embryos and larvae of the Antarctic sea urchin Sterechinus neumayeri: potential for deep-sea invasion from high latitudes. Mar Ecol Prog Ser 192:173–180

    Article  Google Scholar 

  • Young CM, Chia FS (1982) Factors controlling spatial distribution of the sea cucumber Psolus chitonoides: settling and post-settling behaviour. Mar Biol 69:195–205

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful with all the authors that participated on this contribution. We appreciate the help and extensive work of the students from the Laboratorio de Ecología y Taxonomía de Equinodermos, Colección Nacional de Equinodermos Dra. María Elena Caso, Instituto de Ciencias del Mar y Limnología from the Universidad Autónoma Nacional de México. JJA wants to acknowledge Monica Chavez for preparing all the figures from this chapter and CONACYT and CONICIT for all the economic support during the preparation and analysis of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pérez-Ruzafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Pérez-Ruzafa, A. et al. (2013). Latin America Echinoderm Biodiversity and Biogeography: Patterns and Affinities. In: Alvarado, J., Solis-Marin, F. (eds) Echinoderm Research and Diversity in Latin America. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20051-9_16

Download citation

Publish with us

Policies and ethics