Skip to main content

Storage of Adipose Stem Cells

  • Chapter
  • First Online:

Abstract

Adipose-derived stem cells (ADSCs) are becoming the cells of choice for an increasing number of clinical trials, and they promise to be in the next decade the preferential cell type used in cell therapies. Here we describe how they can be isolated from adipose tissue, prepared for storage, and eventually conserved in liquid nitrogen, waiting for future cell therapy applications. In particular, we show how a mesenchymal stem cell bank could be structured for providing financial means to perform research and development related to cell therapies. But also the essentials of adipose tissue, ADSCs and how they can be characterized for in vitro growth, immuno-phenotyping and differentiation in other lineages like osteo-, chondro and adipo-. Freezing technology is also reviewed and results specific for patient-to-bench process are shown including legislative aspects allowing these cells to be used as a standardized transplant. Overall, these cells demonstrate that they can be easily extracted from adipose tissue, they can be grown in large amounts, differentiate in the three lineages, and possess the mesenchymal phenotype. Furthermore, they can resist very well to freezing/thawing procedures by maintaining a good capability of forming colonies (CFU-F).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anchordoguy TJ, Cecchini CA, Crowe JH et al (1991) Insights into the cryoprotective mechanism of dimethyl sulfoxide for phospholipid bilayers. Cryobiology 28:467–473

    Article  PubMed  CAS  Google Scholar 

  2. Arakawa T, Carpenter JF, Kita YA et al (1990) The basis for toxicity of certain cryoprotectants: a hypothesis. Cryobiology 27:401–415

    Article  CAS  Google Scholar 

  3. Auray-Blais C, Patenaude J (2006) A biobank management model applicable to biomedical research. BMC Med Ethics 7:E4

    Article  PubMed  Google Scholar 

  4. Bakhach J (2009) The cryopreservation of composite tissues. Organogenesis 5(3):119–126

    Article  PubMed  Google Scholar 

  5. Bielby RC, Boccaccini AR, Polak JM et al (2004) In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng 10:1518–1525

    PubMed  CAS  Google Scholar 

  6. Boquest AC, Shahdadfar A, Fronsdal K et al (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131–1141

    Article  PubMed  CAS  Google Scholar 

  7. Diller KR, Raymond JF (1990) Water transport through a multicellular tissue during freezing: a network thermodynamic modeling analysis. Cryo Lett 11:151–162

    Google Scholar 

  8. Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  9. Fahy GM (1986) The relevance of cryoprotectant “toxicity” to cryobiology. Cryobiology 23:1–13

    Article  PubMed  CAS  Google Scholar 

  10. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

    PubMed  CAS  Google Scholar 

  11. Gaben-Cogneville AM, Aron Y, Idriss G et al (1983) Differentiation under the control of insulin of rat preadipocytes in primary culture. Isolation of homogeneous cellular fractions by gradient centrifugation. Biochim Biophys Acta 762:437–444

    Article  PubMed  CAS  Google Scholar 

  12. Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100(9):1249–1260

    Article  PubMed  CAS  Google Scholar 

  13. Glick JM, Adelman SJ (1983) Established cell lines from rat adipose tissue that secrete lipoprotein lipase. In Vitro 19:421–428

    Article  PubMed  CAS  Google Scholar 

  14. Hollenberg CH, Vost A (1969) Regulation of DNA synthesis in fat cells and stromal elements from rat adipose tissue. J Clin Invest 47:2485–2498

    Article  PubMed  CAS  Google Scholar 

  15. Karner E, Unger C, Sloan AJ et al (2007) Bone matrix formation in osteogenic cultures derived from human embryonic stem cells in vitro. Stem Cells Dev 16:39–52

    Article  PubMed  Google Scholar 

  16. Klimanskaya I, Chung Y, Becker S et al (2007) Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2(8):1963–1972

    Article  PubMed  CAS  Google Scholar 

  17. Liaño F, Torres A (2009) Biobanks: a new tool for clinical research. Nefrologia 29(3):193–195

    PubMed  Google Scholar 

  18. MacRae JW, Tholpady SS, Ogle RC et al (2004) Ex vivo fat graft preservation: effects and implications of cryopreservation. Ann Plast Surg 52:281–283

    Article  PubMed  Google Scholar 

  19. Nelson TJ, Behfar A, Terzic A (2008) Stem cells: biologics for regeneration. Clin Pharmacol Ther 84(5):620–623

    Article  PubMed  CAS  Google Scholar 

  20. Nelson TJ, Behfar A, Terzic A (2008) Strategies for therapeutic repair: the “R3” regenerative medicine paradigm. Clin Transl Sci 1(2):168–171

    Article  PubMed  Google Scholar 

  21. Nelson TJ, Behfar A, Yamada S et al (2009) Stem cell platforms for regenerative medicine. Clin Transl Sci 2(3):222–227

    Article  PubMed  CAS  Google Scholar 

  22. Rigotti G, Marchi A, Galiè M et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422

    Article  PubMed  CAS  Google Scholar 

  23. Rubinsky B (1989) The energy equation for freezing of biological tissue. J Heat Transfer 111:988–997

    Article  Google Scholar 

  24. Shoshani O, Ullmann Y, Shupak A et al (2001) The role of frozen storage in preserving adipose tissue obtained by suction-assisted lipectomy for repeated fat injection procedures. Dermatol Surg 27:645–647

    Article  PubMed  CAS  Google Scholar 

  25. Takahashi K, Okita K, Nakagawa M et al (2007) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2(12):3081–3089

    Article  PubMed  CAS  Google Scholar 

  26. Timasheff SN (1982) Preferential interactions in protein-water co-solvent systems. In: Franks F, Mathias S (eds) Biophysics of water. Wiley, New York, pp 70–72

    Google Scholar 

  27. Wolter TP, Heimburg DV, Stoffels I et al (2005) Cryopre­servation of mature human adipocytes: in vitro measurement of viability. Ann Plast Surg 55:408–413

    Article  PubMed  CAS  Google Scholar 

  28. Yoshimura K, Shigeura T, Matsumoto D et al (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol 208:64–76, 27

    Article  PubMed  CAS  Google Scholar 

  29. Yoshimura K, Asano Y, Aoi N et al (2010) Progenitor-enriched adipose tissue transplantation as rescue for breast implant complications. Breast J 16(2):169–175

    Article  PubMed  Google Scholar 

  30. Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  31. Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Bronz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bronz, G., Soldati, G. (2011). Storage of Adipose Stem Cells. In: Illouz, YG., Sterodimas, A. (eds) Adipose Stem Cells and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20012-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20012-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20011-3

  • Online ISBN: 978-3-642-20012-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics