Skip to main content

Gene Therapy Used for Adipose Stem Cell Engineering

  • Chapter
  • First Online:
Book cover Adipose Stem Cells and Regenerative Medicine
  • 1494 Accesses

Abstract

The fundamental principal of gene therapy is the transfer of genetic material into individuals for therapeutic purposes by altering cellular function or structure at the molecular level. The genetic alteration ultimately leads to the production of a therapeutic protein that is secreted into the surrounding tissue milieu, is expressed on the cell surface or acts as a signaling molecule to influence cell or tissue behavior. Genetic engineering and the use of adult stem cells may hold the key to future development of tissue-engineered constructs. The identification or perhaps deletion of specific genetic sequences might be able to identify and modify genes critical to tissue development. The overall safety of the various gene delivery systems is also an important consideration. Clearly, many hurdles remain to be addressed before these approaches can be widely applied as a common therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett JH et al (1991) Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 99(pt 1):131–139

    PubMed  Google Scholar 

  2. Bonadio J (2000) Tissue engineering via local gene delivery: update and future prospects for enhancing the technology. Adv Drug Deliv Rev 44(2-3):185–194

    Article  PubMed  CAS  Google Scholar 

  3. Bonadio J (2002) Genetic approaches to tissue repair. Ann NY Acad Sci 961:58–60

    Article  PubMed  CAS  Google Scholar 

  4. Bonadio J et al (1999) Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med 5(7):753–759

    Article  PubMed  CAS  Google Scholar 

  5. Bruder SP, Fink DJ, Caplan AI (1994) Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56(3):283–294

    Article  PubMed  CAS  Google Scholar 

  6. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64(2):278–294

    Article  PubMed  CAS  Google Scholar 

  7. Burton EA, Glorioso JC, Fink DJ (2003) Gene therapy progress and prospects: Parkinson’s disease. Gene Ther 10(20):1721–1727

    Article  PubMed  CAS  Google Scholar 

  8. Chamberlain JR et al (2004) Gene targeting in stem cells from individuals with osteogenesis imperfecta. Science 303(5661):1198–1201

    Article  PubMed  CAS  Google Scholar 

  9. Chen HK et al (2005) Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest 35(11):677–686

    Article  PubMed  CAS  Google Scholar 

  10. Crystal RG (1995) Transfer of genes to humans: early lessons and obstacles to success. Science 270(5235):404–410

    Article  PubMed  CAS  Google Scholar 

  11. Danos O, Heard JM (1992) Recombinant retroviruses as tools for gene transfer to somatic cells. Bone Marrow Transplant 9(suppl 1):131–138

    PubMed  Google Scholar 

  12. De Ugarte DA et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109

    Article  PubMed  Google Scholar 

  13. Evans CH, Robbins PD (1995) Possible orthopaedic applications of gene therapy. J Bone Joint Surg Am 77(7):1103–1114

    PubMed  CAS  Google Scholar 

  14. Galotto M et al (1994) Hypertrophic chondrocytes undergo further differentiation to osteoblast-like cells and participate in the initial bone formation in developing chick embryo. J Bone Miner Res 9(8):1239–1249

    Article  PubMed  CAS  Google Scholar 

  15. Goessler UR, Hormann K, Riedel F (2004) Tissue engineering with chondrocytes and function of the extracellular matrix (review). Int J Mol Med 13(4):505–513

    PubMed  CAS  Google Scholar 

  16. Goessler UR, Hormann K, Riedel F (2005) Tissue engineering with adult stem cells in reconstructive surgery (review). Int J Mol Med 15(6):899–905

    PubMed  CAS  Google Scholar 

  17. Goessler UR et al (2006) Perspectives of gene therapy in stem cell tissue engineering. Cells Tissues Organs 183(4):169–179

    Article  PubMed  Google Scholar 

  18. Goff SP, Lobel LI (1987) Mutants of murine leukemia viruses and retroviral replication. Biochim Biophys Acta 907(2):93–123

    PubMed  CAS  Google Scholar 

  19. Hall PA, Watt FM (1989) Stem cells: the generation and maintenance of cellular diversity. Development 106(4):619–633

    PubMed  CAS  Google Scholar 

  20. Hammerling GJ, Ganss R (2006) Vascular integration of endothelial progenitors during multistep tumor progression. Cell Cycle 5(5):509–511

    Article  PubMed  Google Scholar 

  21. Korbling M, Estrov Z (2003) Adult stem cells for tissue repair–a new therapeutic concept? N Engl J Med 349(6):570–582

    Article  PubMed  Google Scholar 

  22. Korbling M, Estrov Z, Champlin R (2003) Adult stem cells and tissue repair. Bone Marrow Transplant 32(suppl 1):S23–S24

    Article  PubMed  Google Scholar 

  23. Krisky DM et al (1998) Development of herpes simplex virus replication-defective multigene vectors for com­bination gene therapy applications. Gene Ther 5(11):1517–1530

    Article  PubMed  CAS  Google Scholar 

  24. Krisky DM et al (1998) Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene Ther 5(12):1593–1603

    Article  PubMed  CAS  Google Scholar 

  25. Krougliak V, Graham FL (1995) Development of cell lines capable of complementing E1, E4, and protein IX defective adenovirus type 5 mutants. Hum Gene Ther 6(12):1575–1586

    Article  PubMed  CAS  Google Scholar 

  26. Levitus M, Joenje H, de Winter JP (2006) The Fanconi anemia pathway of genomic maintenance. Cell Oncol 28(1–2):3–29

    PubMed  CAS  Google Scholar 

  27. Lucas WT, Youngner JS (1992) The use of hybrid-selected template increases the specificity of the polymerase chain reaction. PCR Meth Appl 2(1):41–44

    Article  CAS  Google Scholar 

  28. Marshall E (2000) Improving gene therapy’s tool kit. Science 288(5468):953

    Article  PubMed  CAS  Google Scholar 

  29. Marshall E (2002) Clinical research. Gene therapy a suspect in leukemia-like disease. Science 298(5591):34–35

    Article  PubMed  CAS  Google Scholar 

  30. Oligino TJ et al (2000) Vector systems for gene transfer to joints. Clin Orthop Relat Res 379(suppl):S17–S30

    Article  PubMed  Google Scholar 

  31. Parker AM, Katz AJ (2006) Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther 6(6):567–578

    Article  PubMed  CAS  Google Scholar 

  32. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  33. Reyes M et al (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109(3):337–346

    PubMed  CAS  Google Scholar 

  34. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80(1):35–47

    Article  PubMed  CAS  Google Scholar 

  35. Salyapongse AN, Billiar TR, Edington H (1999) Gene therapy and tissue engineering. Clin Plast Surg 26(4):663–676, x

    PubMed  CAS  Google Scholar 

  36. Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451

    Article  PubMed  CAS  Google Scholar 

  37. Toma JG et al (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3(9):778–784

    Article  PubMed  CAS  Google Scholar 

  38. Warren SM et al (2002) New directions in bioabsorbable technology. J Neurosurg 97(4 suppl):481–489

    PubMed  CAS  Google Scholar 

  39. Young LS et al (2006) Viral gene therapy strategies: from basic science to clinical application. J Pathol 208(2):299–318

    Article  PubMed  CAS  Google Scholar 

  40. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  PubMed  CAS  Google Scholar 

  41. Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich R. Goessler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goessler, U.R. (2011). Gene Therapy Used for Adipose Stem Cell Engineering. In: Illouz, YG., Sterodimas, A. (eds) Adipose Stem Cells and Regenerative Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20012-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20012-0_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20011-3

  • Online ISBN: 978-3-642-20012-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics