Skip to main content

5 Function and Evolution of Pheromones and Pheromone Receptors in Filamentous Ascomycetes

  • Chapter
  • First Online:
Evolution of Fungi and Fungal-Like Organisms

Part of the book series: The Mycota ((MYCOTA,volume 14))

Abstract

In fungi, mating usually occurs between morphologically identical partners that are distinguished only by their mating type. Recognition of a compatible mating partner is accomplished by a pheromone/receptor system. Before fusion, cells sense and respond to mating pheromones of the compatible partner by activating a signal transduction pathway involving a seven transmembrane receptor/G protein complex linked to a mitogen-activated protein kinase module. Aspects of this pheromone/receptor system have been extensively characterized in the yeast Saccharcromyces cerevisiae. Comparison of this well understood system with pheromones and receptors in filamentous ascomycetes has generated new insights into the functions of fungal peptide pheromones. This review describes the current knowledge of the structure, evolution and function of pheromone/receptor systems in filamentous ascomycetes, with comparison to the well known S. cerevisiae system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bader O, Krauke Y, Hube B (2008) Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 8:116

    Google Scholar 

  • Bardwell L (2005) A walk-through of the yeast mating pheromone response pathway. Peptides 26:339–350

    Article  PubMed  Google Scholar 

  • Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC (1996) Circadian clock-controlled genes from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci USA 93:13096–13101

    Article  PubMed  CAS  Google Scholar 

  • Betz R, MacKay VL, Duntze W (1977) a-Factor from Saccharomyces cerevisiae: partial characterization of a mating hormone produced by cells of mating type a. J Bacteriol 132:462–472

    PubMed  CAS  Google Scholar 

  • Bistis GN (1981) Chemotropic interactions between trychogynes and conidia of the opposite mating type in Neurospora crassa. Mycologia 73:959–975

    Article  Google Scholar 

  • Bistis GN (1983) Evidence for diffusible, mating-type specifictrichogyne attractants in Neurospora crassa. Exp Mycol 7:292–295

    Article  CAS  Google Scholar 

  • Blakelee AF (1904) Sexual reproduction in the Mucorinae. Proc Am Acad Arts Sci 40:205–319

    Article  Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    Article  PubMed  CAS  Google Scholar 

  • Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441–450

    Article  PubMed  Google Scholar 

  • Brake AJ, Brenner C, Najarian R, Laybourne P (1985) Structure of genes encoding precursors of the yeast peptide mating pheromone α-factor. In: Gething MJ (ed) Protein transport and secretion. Cold Spring Habor Laboratory Press, Cold Spring Habor, NY, pp 103–108

    Google Scholar 

  • Brake AJ, Julius DJ, Thorner J (1983) A functional prepro-alpha-factor gene in Saccharomyces yeasts can contain three, four, or five repeats of the mature pheromone sequence. Mol Cell Biol 3:1440–1450

    PubMed  CAS  Google Scholar 

  • Brenner C, Fuller RS (1992) Structural and enzymatic characterization of a purified prohormone-processing enzyme: secreted, soluble Kex2 protease. Proc Natl Acad Sci USA 89:922–926

    Article  PubMed  CAS  Google Scholar 

  • Brown AJ, Casselton L (2001) Mating in mushrooms: increasing the chances but prolonging the affair. Trends Genet 17:393–400

    Article  PubMed  CAS  Google Scholar 

  • Bücking-Throm E, Duntze W, Hartwell LH, Manney TR (1973) Reversible arrest of haploid yeast cells in the initiation of DNA synthesis by a diffusible sex factor. Exp Cell Res 76:99–110

    Article  PubMed  Google Scholar 

  • Burkholder AC, Hartwell LH (1985) The yeast alpha-factor receptor: structural properties deduced from the sequence of the STE2 gene. Nucleic Acids Res 13:8463–8475

    Article  PubMed  CAS  Google Scholar 

  • Caldwell GA, Naider F, Becker JM (1995) Fungal lipopeptide mating pheromones: a model system for the study of protein prenylation. Microbiol Rev 59:406–422

    PubMed  CAS  Google Scholar 

  • Casselton LA (2002) Mate recognition in fungi. Heredity 88:142–147

    Article  PubMed  CAS  Google Scholar 

  • Ćelić A, Martin NP, Son CD, Becker JM, Naider F, Dumont ME (2003) Sequences in the intracellular loops of the yeast pheromone receptor ste2p required for G protein activation. Biochemistry 42:3004–3017

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Konopka JB (2006) Accessibility of cysteine residues substituted into the cytoplasmic regions of the α-factor receptor identifies the intracellular residues that are available for G protein interaction. Biochemistry 45:15310–15317

    Article  PubMed  CAS  Google Scholar 

  • Ciejek E, Thorner J, Geier M (1977) Solid phase peptide synthesis of α-factor, a yeast mating pheromone. Biochem Biophys Res Commun 78:952–961

    Article  PubMed  CAS  Google Scholar 

  • Cooper A, Bussey H (1989) Characterization of the yeast KEX1 gene product: a carboxypeptidase involved in processing secreted precursor proteins. Mol Cell Biol 9:2706–2714

    PubMed  CAS  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryotic Cell 4:407–420

    Article  PubMed  CAS  Google Scholar 

  • Davey J (1992) Mating pheromones of the fission yeast Schizosaccharomyces pombe: purification and structural characterization of M-factor and isolation and analysis of two genes encoding the pheromone. EMBO J 11:951–960

    PubMed  CAS  Google Scholar 

  • Debuchy R (1999) Internuclear recognition: a possible connection between euascomycetes and homobasidiomycetes. Fungal Genet Biol 27:218–223

    Article  PubMed  CAS  Google Scholar 

  • Debuchy R, Berteaux-Leceleir V, Silar P (2010) Mating systems and sexual morphogenesis in ascomycetes. In: Borkovich KA, Ebbole DJ (eds) Cellular and molecular biology of filamentous fungi. ASM Press, Washington, DC, pp 501–535

    Google Scholar 

  • Debuchy R, Turgeon BG (2006) Mating-type structure, evolution, and function in euascomycetes. In: Kües U, Fischer R (eds) Growth, differentiation and sexuality (The Mycota). Springer, Berlin Heidelberg New York, pp 293–323

    Chapter  Google Scholar 

  • Dignard D, El-Naggar AL, Logue ME, Butler G, Whiteway M (2007) Identification and characterization of MFA1, the gene encoding Candida albicans α-factor pheromone. Eukaryot Cell 6:487–494

    Article  PubMed  CAS  Google Scholar 

  • Dohlman HG, Slessareva JE (2006) Pheromone signaling pathways in yeast. Sci STKE 2006:cm6

    Google Scholar 

  • Dohlman HG, Thorner JW (2001) Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu Rev Biochem 70:703–754

    Article  PubMed  CAS  Google Scholar 

  • Dolan JW, Fields S (1991) Cell-type-specific transcription in yeast. Biochim Biophys Acta 1088:155–169

    Article  PubMed  CAS  Google Scholar 

  • Duntze W, MacKay V, Manney TR (1970) Saccharomyces cerevisiae: a diffusible sex factor. Science 168:1472–1473

    Article  PubMed  CAS  Google Scholar 

  • Elion EA, Qi M, Chen W (2005) Signal transduction: signaling specificity in yeast. Science 307:687–688

    Article  PubMed  CAS  Google Scholar 

  • Elleuche S, Pöggeler S (2008) A cyanase is transcriptionally regulated by arginine and involved in cyanate decomposition in Sordaria macrospora. Fungal Genet Biol 45:1458–1469

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) PHYLIP. Phylogeny inference package version 3.6. Distributed by the author. University of Washington, Seattle

    Google Scholar 

  • Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, Lee SI, Bastürkmen M, Spevak CC, Clutterbuck J, Kapitonov V, Jurka J, Scazzocchio C, Farman M, Butler J, Purcell S, Harris S, Braus GH, Draht O, Busch S, D'Enfert C, Bouchier C, Goldman GH, Bell-Pedersen D, Griffiths-Jones S, Doonan JH, Yu J, Vienken K, Pain A, Freitag M, Selker EU, Archer DB, Peñalva MA, Oakley BR, Momany M, Tanaka T, Kumagai T, Asai K, Machida M, Nierman WC, Denning DW, Caddick M, Hynes M, Paoletti M, Fischer R, Miller B, Dyer P, Sachs MS, Osmani SA, Birren BW (2005) Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438:1105–1115

    Article  PubMed  CAS  Google Scholar 

  • Glass NL, Vollmer SJ, Staben C, Grotelueschen J, Metzenberg RL, Yanofsky C (1988) DNAs of the two mating-type alleles of Neurospora crassa are highly dissimilar. Science 241:570–573

    Article  PubMed  CAS  Google Scholar 

  • Hagen DC, McCaffrey G, Sprague GF (1986) Evidence the yeast STE3 gene encodes a receptor for the peptide pheromone a factor: gene sequence and implications for the structure of the presumed receptor. Proc Natl Acad Sci USA 83:1418–1422

    Article  PubMed  CAS  Google Scholar 

  • Hamm HE (1998) The many faces of G protein signaling. J Biol Chem 273:669–672

    Article  PubMed  CAS  Google Scholar 

  • Hartwell L (1980) Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J Cell Biol 85:811–822

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    Article  PubMed  CAS  Google Scholar 

  • Hicks KA, Hartman HL, Fierke CA (2005) Upstream polybasic region in peptides enhances dual specificity for prenylation by both farnesyltransferase and geranylgeranyltransferase type I. Biochemistry 44:15325–15333

    Article  PubMed  CAS  Google Scholar 

  • Hoff B, Pöggeler S, Kück U (2008) Eighty years after its discovery, Fleming's Penicillium strain discloses the secret of its sex. Eukaryot Cell 7:465–470

    Article  PubMed  CAS  Google Scholar 

  • Hougland JL, Lamphear CL, Scott SA, Gibbs RA, Fierke CA (2009) Context-dependent substrate recognition by protein farnesyltransferase. Biochemistry 48:1691–1701

    Article  PubMed  CAS  Google Scholar 

  • Hrycyna CA, Sapperstein SK, Clarke S, Michaelis S (1991) The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J 10:1699–16709

    PubMed  CAS  Google Scholar 

  • Huyer G, Kistler A, Nouvet FJ, George CM, Boyle ML, Michaelis S (2006) Saccharomyces cerevisiae a-factor mutants reveal residues critical for processing, activity, and export. Eukaryot Cell 5:1560–1570

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Yamamoto M (1994) The fission yeast mating pheromone P-factor: its molecular structure, gene structure, and ability to induce gene expression and G1 arrest in the mating partner. Genes Dev 8:328–338

    Article  PubMed  CAS  Google Scholar 

  • Jiménez R, Burgos M (1998) Mammalian sex determination: joining pieces of the genetic puzzle. Bioassays 20:696–699

    Article  Google Scholar 

  • Julius D, Blair L, Brake A, Sprague G, Thorner J (1983) Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32:839–852

    Article  PubMed  CAS  Google Scholar 

  • Julius D, Brake A, Blair L, Kunisawa R, Thorner J (1984) Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required the processing of yeast prepro-α-factor. Cell 36:309–318

    Article  PubMed  CAS  Google Scholar 

  • Karlson P, Luscher M (1959) Pheromones: a new term for a class of biologically active substances. Nature 183:55–56

    Article  PubMed  CAS  Google Scholar 

  • Karlsson M, Nygren K, Johannesson H (2008) The evolution of the pheromonal signal system and its potential role for reproductive isolation in heterothallic neurospora. Mol Biol Evol 25:168–178

    Article  PubMed  CAS  Google Scholar 

  • Kim H-K, Lee T, Yun S-H (2008) A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet Biol 45:1188–1196

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Borkovich KA (2004) A pheromone receptor gene, pre1, is essential for mating type-specific directional growth and fusion of trichgynes and female fertility in Neurospora crassa. Mol Microbiol 52:1781–1798

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Borkovich KA (2006) Pheromones are essential for male fertility and sufficient to direct chemotropic polarized growth of trichogynes during mating in Neurospora crassa. Eukaryotic Cell 5:544–554

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Metzenberg RL, Nelson MA (2002) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryotic Cell 1:987–999

    Article  PubMed  CAS  Google Scholar 

  • Klix V, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Poggeler S (2010) Functional characterization of MAT1-1-specific mating-type genes in the homothallic ascomycete Sordaria macrospora provides new insights into essential and nonessential sexual regulators. Eukaryot Cell 9:894–905

    Article  PubMed  CAS  Google Scholar 

  • Koopman P (1999) Sry and Sox9: mammalian testis-determining genes. Cell Mol Life Sci 55:839–885

    PubMed  CAS  Google Scholar 

  • Korf RP (1952) The terms homothallism and heterothallism. Nature 170:534–535

    Article  PubMed  CAS  Google Scholar 

  • Kurjan J (1993) The pheromone response pathway in Saccharomyces cerevisiae. Annu Rev Genet 27:147–179

    Article  PubMed  CAS  Google Scholar 

  • Kurjan J, Herskowitz I (1982) Structure of a yeast pheromone gene (MFα): a putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30:933–943

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee T, Lee YW, Yun SH, Turgeon BG (2003) Shifting fungal reproductive mode by manipulation of mating type genes: obligatory heterothallism of Gibberella zeae. Mol Microbiol 50:145–152

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Leslie JF, Bowden RL (2008) Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryotic Cell 7:1211–1221

    Article  PubMed  CAS  Google Scholar 

  • Levi JD (1956) Mating reaction in yeast. Nature 177:753–754

    Article  Google Scholar 

  • Lin X, Heitman J (2007) Mechanisms of homothallism in Fungi and transitions between heterothallism and homothallism. In: Heitman J, Kronstad JW, Taylor JW, Casselton LA (eds) Sex in fungi. ASM Press, Washington, DC, pp 35–57

    Google Scholar 

  • Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K-I, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J-i, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161

    Article  PubMed  Google Scholar 

  • Marcus S, Caldwell GA, Miller D, Xue CB, Naider F, Becker JM (1991) Significance of C-terminal cysteine modifications to the biological activity of the Saccharomyces cerevisiae α-factor mating pheromone. Mol Cell Biol 11:3603–3612

    PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Eisenhaber F (2005) Refinement and prediction of protein prenylation motifs. Genome Biol 6:R55

    Article  PubMed  CAS  Google Scholar 

  • Mayrhofer S, Pöggeler S (2005) Functional characterization of an α-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. Eukaryot Cell 4:661–672

    Article  PubMed  CAS  Google Scholar 

  • Mayrhofer S, Weber JM, Pöggeler S (2006) Pheromones and pheromone receptors are required for proper sexual development in the homothallic ascomycete Sordaria macrospora. Genetics 172:1521–1533

    Article  PubMed  CAS  Google Scholar 

  • Metzenberg RL, Glass NL (1990) Mating type and mating strategies in Neurospora. Bioessays 12:53–59

    Article  PubMed  CAS  Google Scholar 

  • Michaelis S (1993) STE6, the yeast a-factor transporter. Semin Cell Biol 4:17–27

    Article  PubMed  CAS  Google Scholar 

  • Moores SL, Schaber MD, Mosser SD, Rands E, O'Hara MB, Garsky VM, Marshall MS, Pompliano DL, Gibbs JB (1991) Sequence dependence of protein isoprenylation. J Biol Chem 266:14603–14610

    PubMed  CAS  Google Scholar 

  • Naider F, Becker JM (2004) The [alpha]-factor mating pheromone of Saccharomyces cerevisiae: a model for studying the interaction of peptide hormones and G protein-coupled receptors. Peptides 25:1441–1463

    Article  PubMed  CAS  Google Scholar 

  • O’Gorman CM, Fuller HT, Dyer PS (2009) Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature 457:471–474

    Article  PubMed  CAS  Google Scholar 

  • O’Shea SF, Chaure PT, Halsall JR, Olesnicky NS, Leibbrandt A, Connerton IF, Casselton LA (1998) A large pheromone and receptor gene complex determines multiple B mating type specificities in Coprinus cinereus. Genetics 148:1081–1090

    PubMed  Google Scholar 

  • Paoletti M, Rydholm C, Schwier EU, Anderson MJ, Szakacs G, Lutzoni F, Debeaupuis JP, Latgé JP, Denning DW, Dyer PS (2005) Evidence for sexuality in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Biol 15:1242–1248

    Article  PubMed  CAS  Google Scholar 

  • Paoletti M, Seymour FA, Alcocer MJ, Kaur N, Calvo AM, Archer DB, Dyer PS (2007) Mating type and the genetic basis of self-fertility in the model fungus Aspergillus nidulans. Curr Biol 17:1384–1389

    Article  PubMed  CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d'Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram. A.F, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  CAS  Google Scholar 

  • Pöggeler S (2000) Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr Genet 37:403–411

    Article  PubMed  Google Scholar 

  • Pöggeler S (2002) Genomic evidence for mating abilities in the asexual pathogen Aspergillus fumigatus. Curr Genet 42:153–160

    Article  PubMed  CAS  Google Scholar 

  • Pöggeler S, Hoff B, Kück U (2008) Asexual cephalosporin C producer Acremonium chrysogenum carries a functional mating type locus. Appl Environ Microbiol 74:6006–6016

    Article  PubMed  CAS  Google Scholar 

  • Pöggeler S, Kück U (2000) Comparative analysis of the mating-type loci from Neurospora crassa and Sordaria macrospora: identification of novel transcribed ORFs. Mol Gen Genet 263:292–301

    Article  PubMed  Google Scholar 

  • Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:9–17

    Article  PubMed  Google Scholar 

  • Pöggeler S, Nowrousian M, Ringelberg C, Loros JJ, Dunlap JC, Kück U (2006) Microarray and real-time PCR analyses reveal mating type-dependent gene expression in a homothallic fungus. Mol Gen Genomics 275:492–503

    Article  CAS  Google Scholar 

  • Pöggeler S, Risch S, Kück U, Osiewacz HD (1997) Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete. Genetics 147:567–580

    PubMed  Google Scholar 

  • Powell WA, Van Alfen NK (1987) Differential accumulation of poly(A)+ RNA between virulent and double-stranded RNA-induced hypovirulent strains of Cryphonectria (Endothia) parasitica. Mol Cell Biol 7:3688–3693

    PubMed  CAS  Google Scholar 

  • Powers S, Michaelis S, Broek D, Sonia Santa A-A, Field J, Herskowitz I, Wigler M (1986) RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone a-factor. Cell 47:413–422

    Article  PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Rasmussen SGF, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  PubMed  CAS  Google Scholar 

  • Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S (1998) Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci USA 95:11175–11180

    Article  PubMed  CAS  Google Scholar 

  • Schmoll M, Seibel C, Tisch D, Dorrer M, Kubicek CP (2010) A novel class of peptide pheromone precursors in ascomycetous fungi. Mol Microbiol 77:1483–1501

    Article  PubMed  CAS  Google Scholar 

  • Schmoll M, Zeilinger S, Mach RL, Kubicek CP (2004) Cloning of genes expressed early during cellulase induction in Hypocrea jecorina by a rapid subtraction hybridization approach. Fungal Genet Biol 41:877–887

    Article  PubMed  CAS  Google Scholar 

  • Schuurs TA, Dalstra HJ, Scheer JM, Wessels JG (1998) Positioning of nuclei in the secondary mycelium of Schizophyllum commune in relation to differential gene expression. Fungal Genet Biol 23:150–161

    Article  PubMed  CAS  Google Scholar 

  • Seo JA, Han KH, Yu JH (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53:1611–1623

    Article  PubMed  CAS  Google Scholar 

  • Shen WC, Bobrowicz P, Ebbole DJ (1999) Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet Biol 27:253–263

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Kaminskyj S, Caldwell S, Loewen MC (2007) A role for a complex between activated G protein-coupled receptors in yeast cellular mating. Proc Natl Acad Sci USA 104:5395–5400

    Article  PubMed  CAS  Google Scholar 

  • Shi C, Kendall SC, Grote E, Kaminskyj S, Loewen MC (2009) N-terminal residues of the yeast pheromone receptor, Ste2p, mediate mating events independently of G1-arrest signaling. J Cell Biochem 107:630–638

    Article  PubMed  CAS  Google Scholar 

  • Shiu PK, Glass NL (2000) Cell and nuclear recognition mechanisms mediated by mating type in filamentous ascomycetes. Curr Opin Microbiol 3:183–188

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Chen EY, Lugovoy JM, Chang CN, Hitzeman RA, Seeburg PH (1983) Saccharomyces cerevisiae contains two discrete genes coding for the α-factor pheromone. Nucleic Acids Res 11:4049–4063

    Article  PubMed  CAS  Google Scholar 

  • Spellig T, Bölker M, Lottspeich F, Frank RW, Kahmann R (1994) Pheromones trigger filamentous growth in Ustilago maydis. EMBO J 1994:1620–1627

    Google Scholar 

  • Stajich JE, Berbee ML, Blackwell M, Hibbett DS, James TY, Spatafora JW, Taylor JW (2009) The fungi. Curr Biol 29:R840–R845

    Article  CAS  Google Scholar 

  • Stefan CJ, Blumer KJ (1994) The third cytoplasmic loop of a yeast G-protein-coupled receptor controls pathway activation, ligand discrimination, and receptor internalization. Mol Cell Biol 14:3339–3349

    PubMed  CAS  Google Scholar 

  • Stötzler D, Betz R, Duntze W (1977) Stimulation of yeast mating hormone activity by synthetic oligopeptides. J Bacteriol 132:28–35

    PubMed  CAS  Google Scholar 

  • Stötzler D, Duntze W (1976) Isolation and characterization of four related peptides exhibiting α factor activity from Saccharomyces cerevisiae. Eur J Biochem 65:257–262

    Article  PubMed  Google Scholar 

  • Strandberg R, Nygren K, Menkis A, James TY, Wik L, Stajich JE, Johannesson H (2010) Conflict between reproductive gene trees and species phylogeny among heterothallic and pseudohomothallic members of the filamentous ascomycete genus Neurospora. Fungal Genet Biol 47:869–878

    Article  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protocols Bioinform 2:Unit 2.3

    Google Scholar 

  • Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5

    Article  PubMed  CAS  Google Scholar 

  • Turina M, Prodi A, Alfen NKV (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40:242–251

    Article  PubMed  CAS  Google Scholar 

  • Vaillancourt LJ, Raudaskoski M, Specht CA, Raper CA (1997) Multiple genes encoding pheromones and a pheromone receptor define the β1 mating-type specificity in Schizophyllum commune. Genetics 146:541–551

    PubMed  CAS  Google Scholar 

  • Wang SH, Xue CB, Nielsen O, Davey J, Naider F (1994) Chemical synthesis of the M-factor mating pheromone from Schizosaccharomyces pombe. Yeast 10:595–601

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Dohlman HG (2004) Pheromone signaling mechanisms in yeast: a prototypical sex machine. Science 306:1508–1509

    Article  PubMed  CAS  Google Scholar 

  • Waters MG, Evans EA, Blobel G (1988) Prepro-α-factor has a cleacable signal sequence. J Biol Chem 263:6209–6214

    PubMed  CAS  Google Scholar 

  • Wendland J, Vaillancourt LJ, Hegner J, Lengeler KB, Laddison KJ, Specht CA, Raper CA, Kothe E (1995) The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes. EMBO J 14:5271–5278

    PubMed  CAS  Google Scholar 

  • Willer M, Hoffmann L, Styrkarsdottir U, Egel R, Davey J, Nielsen O (1995) Two-step activation of meiosis by the mat1 locus in Schizosaccharomyces pombe. Mol Cell Biol 15:4964–4970

    PubMed  CAS  Google Scholar 

  • Woo PC, Chong KT, Tse H, Cai JJ, Lau CC, Zhou AC, Lau SK, Yuen KY (2006) Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Lett 580:3409–3416

    Article  PubMed  CAS  Google Scholar 

  • Xue C, Hsueh YP, Heitman J (2008) Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev 32:1010–1032

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Baasiri RA, Van Alfen NK (1998) Viral repression of fungal pheromone precursor gene expression. Mol Cell Biol 18:953–959

    PubMed  CAS  Google Scholar 

  • Zhang L, Churchill AC, Kazmierczak P, Kim DH, Van Alfen NK (1993) Hypovirulence-associated traits induced by a mycovirus of Cryphonectria parasitica are mimicked by targeted inactivation of a host gene. Mol Cell Biol 13:7782–7792

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie Pöggeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pöggeler, S. (2011). 5 Function and Evolution of Pheromones and Pheromone Receptors in Filamentous Ascomycetes. In: Pöggeler, S., Wöstemeyer, J. (eds) Evolution of Fungi and Fungal-Like Organisms. The Mycota, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19974-5_5

Download citation

Publish with us

Policies and ethics