Skip to main content

Numeric Flow Simulation

  • Chapter
  • First Online:
Book cover Laser Wakefield Electron Acceleration

Part of the book series: Springer Theses ((Springer Theses))

  • 744 Accesses

Abstract

The major issue for microscopic nozzles are boundary layers that form along the internal walls of the nozzle. The boundary layer that forms here is a thin flow layer attached to the nozzle walls that connects the high velocity flow in the volume of the domain with the flow boundary that is immediately attached to the confining walls, and therefore has zero velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gersten, K., Schlichting, H.: Grenzschicht-Theorie, 9th edn. Springer Heidelberg (1997). ISBN 3-540-55744-X

    Google Scholar 

  2. Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries, 3rd edn. (2006)

    Google Scholar 

  3. Agarwal, R.K.: Beyond Navier–Stokes: Burnett equations for flows in the continuumtransition regime. Phys. Fluids 13(10):3061–3085(2001)

    Article  ADS  Google Scholar 

  4. Kujawa, J., Hitt, D.L.: Transient shutdown simulations of a realistic mems supersonic nozzle, pp. 2004–3762. AIAA (2004)

    Google Scholar 

  5. Karniadakis, G.E., Besok, A.: Micro Flows, Fundamentals and Simulation. Springer, Heidelberg (2002)

    Google Scholar 

  6. Mo, H., Lin, C., Gokaltun, S., Skudarnov, P.V.: Numerical study of axisymmetric gas flow in conical micronozzles by dsmc an continuum methods, pp. 2006–991. AIAA (2006)

    Google Scholar 

  7. Gadepalli, V.V.V., Chengxian, lIn.: Navier–Stokes modeling of gas flows in a delaval micronozzle, pp. 2006–1425. AIAA (2006)

    Google Scholar 

  8. Tejeda, G., Maté, B., Fernández-Sánchez, J.M., Montero, S.: Temperature and density mapping of supersonic jet expansions using linear Raman spectroscopy. Phys. Rev. Lett. 76(1):34–37(1996)

    Article  ADS  Google Scholar 

  9. Miller, D.R.: Atomic and Molecular Beam Methods, vol. 1. Oxford University Press, Oxford (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schmid .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmid, K. (2011). Numeric Flow Simulation. In: Laser Wakefield Electron Acceleration. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19950-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19950-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19949-3

  • Online ISBN: 978-3-642-19950-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics