Skip to main content

Periodic Structures

  • Chapter
  • First Online:
  • 1089 Accesses

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

Abstract

One of the conditions for distributed beam-wave interaction to occur is phase velocity smaller than \( c \). There are two relatively simple ways to slow down the phase velocity: (1) load a waveguide with dielectric material or (2) load a waveguide with periodic metallic or dielectric obstacles. The periodic metallic structure is usually the preferred solution in microwave devices since it has relatively low loss, it may sustain relatively high gradients and it may drain any stray electrons. Dielectric structures are virtually the only solution in the optical regime since metals have much higher loss. In addition, breakdown is not the major impediment but rather non-linear effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions, 5th edn. Dover Publications, New York (1968)

    Google Scholar 

  • Andrews, H.L., Boulware, C.H., Brau, C.A., Jarvis, J.D.: Super-radiant emission of Smith-Purcell radiation. Phys. Rev. Spec. Top. Accel. Beams 8, 110702 (2005)

    Article  ADS  Google Scholar 

  • Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)

    Google Scholar 

  • Bane, K.L.F., Chao, A., Weiland, T.: A simple model for the energy loss of a bunched beam traversing a cavity. IEEE Trans. Nucl. Sci. NS-28, 2605 (1981)

    Article  ADS  Google Scholar 

  • Brillouin, L.: Wave guides for slow waves. J. Appl. Phys. 19, 1023 (1948)

    Article  ADS  Google Scholar 

  • Brillouin, L.: Periodic Structures: Electric Filters and Crystal Lattices, 2nd edn. Dover, New York (1953)

    MATH  Google Scholar 

  • Chang, D.B., McDaniel, J.C.: Compact short-wavelength free-electron laser. Phys. Rev. Lett. 63, 1066 (1989)

    Article  ADS  Google Scholar 

  • Chao, A.W.: Physics of Collective Beam Instabilities in High Energy Accelerators, pp. 1–126. Wiley, New York (1993)

    Google Scholar 

  • Dome, G.: Wake potentials of a relativistic point charge crossing a beam-pipe gap: an analytical approximation. IEEE Trans. Nucl. Sci. Vol. NS-32, 2531 (1985)

    Article  ADS  Google Scholar 

  • Dome, G., Palumbo, L., Vaccaro, V.G., Verolino, L.: A method for computing the longitudinal coupling impedance of circular apertures in a periodic array of infinite planes. Part. Accel. 36(1–3), 161–76 (1991)

    Google Scholar 

  • Doucas, G., Mulvey, J.H., Omori, M., Walsh, J.E., Kimmitt, M.F.: First observation of Smith-Purcell radiation from relativistic electrons. Phys. Rev. Lett. 69, 1761 (1992)

    Article  ADS  Google Scholar 

  • Elachi, C.: Waves in active and passive periodic structures: a review. Proc. IEEE 64, 1666 (1976)

    Article  ADS  Google Scholar 

  • Heifets, S.A., Kheifets, S.A.: Rev. Mod. Phys. 63, 631–673 (1991)

    Article  ADS  Google Scholar 

  • Kittel, C.: Introduction to Solid State Physics, 2nd edn. John Wiley & Sons, New York (1956)

    Google Scholar 

  • Korbly, S.E., Kesar, A.S., Sirigiri, J.R., Temkin, R.J.: Observation of frequency-locked coherent terahertz Smith-Purcell radiation. Phys. Rev. Lett. 94, 054803 (2005)

    Article  ADS  Google Scholar 

  • Mizrahi, A., Schächter, L.: Bragg reflection waveguides with a matching layer, 12, Optics Express 3156 (2004a).

    Google Scholar 

  • Mizrahi, A., Schächter, L.: Electromagnetic forces on the dielectric layers of the planar optical Bragg acceleration structure. Phys. Rev. E 74, 036504 (2006)

    Article  ADS  Google Scholar 

  • Salisbury, W.W.: Generation of light from free electrons. J. Opt. Soc. Am. 60, 1279 (1970)

    Article  ADS  Google Scholar 

  • Shin, Y.-M., So, J.-K., Jang, K.-H., Won, J.-H., Srivastava, A., Park, G.S.: Superradiant terahertz Smith-Purcell radiation from surface plasmon excited by counter streaming electron beams. Appl. Phys. Lett. 90, 031502 (2007)

    Article  ADS  Google Scholar 

  • Smith, S.J., Purcell, E.M.: Visible light from localized charges moving across a grating. Phys. Rev. 92, 1069 (1953)

    Article  ADS  Google Scholar 

  • Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  • Toraldo di Francia, G.: On the theory of some cerenkovian effects. Il Nuovo Cimento 16, 61 (1960)

    Article  MathSciNet  Google Scholar 

  • Van den Berg, P.M.: Smith-Purcell radiation from a line charge moving parallel to a reflection grating. J. Opt. Soc. Am. 63, 689 (1973). See also, Van den Berg, P.M.: Smith-Purcell radiation from a point charge moving parallel to a reflection grating. J. Opt. Soc. Am. 62, 1588 (1973)

    Article  ADS  Google Scholar 

  • Yeh, P., Yariv, A.: Bragg reflection waveguides. Opt. Commun. 19, 427–430 (1976)

    Article  ADS  Google Scholar 

  • Zotter, B.W., Kheifets, S.A.: Impedances and Wakes in High-Energy Particle Accelerators. World Scientific, Singapore (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levi Schächter .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schächter, L. (2011). Periodic Structures. In: Beam-Wave Interaction in Periodic and Quasi-Periodic Structures. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19848-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19848-9_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19847-2

  • Online ISBN: 978-3-642-19848-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics