Skip to main content

Detecting Symmetries in Building Footprints by String Matching

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC,volume 1))

Abstract

This paper presents an algorithmic approach to the problem of finding symmetries in building footprints. The problem is motivated by map generalization tasks, for example, symmetry-preserving building simplification and symmetry-aware grouping and aggregation. Moreover, symmetries in building footprints may be used for landmark selection and building classification.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atallah, M. J. (1985). On Symmetry Detection. IEEE Transactions on Computers, c-34(7), 663–666.

    Google Scholar 

  • Cho, M. and Lee, K. M (2009). Bilateral Symmetry Detection via Symmetry- Growing. In: Proc. British Machine Vision Conference (BMVC '09).

    Google Scholar 

  • Christophe, S. and Ruas, A. (2002). Detecting Building Alignments for Generalisation Purposes. In: Proc. ISPRS Commission IV Symposium on GeospatialTheory, Processing and Applications. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV, part 4.

    Google Scholar 

  • Gaffuri, J. and Trévisan, J. (2004). Role of Urban Patterns for Building Generalisation: An Application of AGENT. In: Proc. 7th ICA Workshop on Generalisation and Multiple Representation.

    Google Scholar 

  • Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press.

    Book  Google Scholar 

  • Haunert, J.-H. and Wolff, A. (2010). Optimal and Topologically Safe Simplification of Building Footprints. Pages 192–201 of: Proc. 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM-GIS'10).

    Google Scholar 

  • Heinzle, F. and Anders, K.-H. (2007). Characterising Space via Pattern Recognition Techniques: Identifying Patterns in Road Networks. Chap. 12, pages 233–254 of: Mackaness, W., Ruas, A., and Sarjakoski, T. L. (eds), Generalisation of geographic information: Cartographic modelling and applications. Elsevier.

    Google Scholar 

  • Knuth, D. E., J. H. Morris, Jr., and Pratt, V. R. (1977). Fast Pattern Matching in Strings. Siam Journal on Computing, 6(2), 323–350.

    Article  Google Scholar 

  • Lladós, J., Bunke, H., and Martí, E. (1997). Using Cyclic String Matching to Find Rotational and Reflectional Symmetries in Shapes. Pages 164–179 of: Intelligent Robots: Sensing, Modeling and Planning. Series in Machine Perception and Artificial Intelligence, vol. 27. World Scientific.

    Google Scholar 

  • Loy, G. and Eklundh, J.-O. (2006). Detecting Symmetry and Symmetric Constellations of Features. Pages 508–521 of: Proc. 9th European Conference on Computer Vision (ECCV '06), Part II. Lecture Notes in Computer Science,vol. 3952. Springer.

    Google Scholar 

  • Mackaness, W. and Edwards, G. (2002). The Importance of Modeling Pattern and Structure in Automated Map Generalisation. In: Proc. Joint ISPRS/ICA Workshop on Multi-Scale Representations of Spatial Data.

    Google Scholar 

  • Mitra, N. J., Guibas, L. J., and Pauly, M. (2006). Partial and Approximate Symmetry Detection for 3D Geometry. ACM Transactions on Graphics, 25(3), 560– 568.

    Article  Google Scholar 

  • Neun, M., Burghardt, D., and Weibel, R. (2008). Web Service Approaches for Providing Enriched Data Structures to Generalisation Operators. International Journal of Geographic Information Science, 22(2), 133–165.

    Article  Google Scholar 

  • Niemeier, W. (2002). Ausgleichungsrechnung. Walter de Gruyter.

    Google Scholar 

  • Park, M., Lee, S., Chen, P.-C., Kashyap, S., Butt, A. A., and Liu, Y. (2008). Performance Evaluation of State-of-the-Art Discrete Symmetry Detection Algorithms. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR '08).

    Google Scholar 

  • Peters, D., Wu, Y. H., and Winter, S. (2010). Testing Landmark Identification Theories in Virtual Environments. Pages 54–69 of: Spatial Cognition. Lecture Notes in Computer Science, vol. 6222. Springer.

    Google Scholar 

  • Regnauld, N. (2003). Algorithms for the Amalgamation of Topographic Data. In: Proc. 21st International Cartographic Conference (ICC '03).

    Google Scholar 

  • Ruas, A. and Holzapfel, F. (2003). Automatic Characterization of Building Alignments by Means of Expert Knowledge. In: Proc. 21st International Cartographic Conference (ICC '03).

    Google Scholar 

  • Steiniger, S. (2007). Enabling Pattern-Aware Automated Map Generalization. PhD thesis, University of Zürich.

    Google Scholar 

  • Steiniger, S., Burghardt, D., Lange, T., and Weibel, R. (2008). An Approach for the Classification of Urban Building Structures Based on Discriminant Analysis Techniques. Transactions in GIS, 12(1), 31–59.

    Article  Google Scholar 

  • Thomson, R. C. and Brooks, R. (2002). Exploiting Perceptual Grouping for Map Analysis, Understanding and Generalization: The Case of Road and River Networks. Pages 148–157 of: Proc. 4th International Workshop on Graphics Recognition Algorithms and Applications. Lecture Notes in Computer Science, vol. 2390. Springer.

    Google Scholar 

  • Werder, S., Kieler, B., and Sester, M. (2010). Semi-Automatic Interpretation of Buildings and Settlement Areas in User-Generated Spatial Data. In: Proc. 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM GIS '10). To Appear.

    Google Scholar 

  • Wertheimer, M. (1938). Laws of Organization in Percetional Forms. Pages 71–88 of: A Source Book of Gestalt Psychology. Routledge & Kegan Paul.

    Google Scholar 

  • Wolter, J. D., Woo, T. C., and Volz, R. A. (1985). Optimal Algorithms for Symmetry Detection in two and three Dimensions. The Visual Computer, 1(1), 37–48.

    Article  Google Scholar 

  • Yan, H., Weibel, R., and Yang, B. (2008). A Multi-Parameter Approach to Automated Building Grouping and Generalization. GeoInformatica, 12(1), 73–89.

    Article  Google Scholar 

  • Yang, X., Adluru, N., Latecki, L. J., Bai, X., and Pizlo, Z. (2008). Symmetry of Shapes Via Self-Similarity. Pages 561–570 of: Proc. 4th International Symposium on Advances in Visual Computing, Part II. Lecture Notes In Computer Science, vol. 5359. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan-Henrik Haunert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haunert, JH. (2011). Detecting Symmetries in Building Footprints by String Matching. In: Geertman, S., Reinhardt, W., Toppen, F. (eds) Advancing Geoinformation Science for a Changing World. Lecture Notes in Geoinformation and Cartography(), vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19789-5_16

Download citation

Publish with us

Policies and ethics