Skip to main content

Bioaugmentation for In Situ Soil Remediation: How to Ensure the Success of Such a Process

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Among bioremediation techniques, bioaugmentation is certainly the less easy to control, but at the same time the one exhibiting the greatest potential for the soil cleaning-up. The main challenge for the success of in situ soil bioaugmentation is based on the ability to manage the process in environments subject to variable conditions. Microorganisms are thus suggested to be selected not only for their ability to degrade organic compounds or to modify the chemical form of metals, but also by systematically considering some ecological traits. Bioaugmentation-assisted plants could help improve the stability of the microbial activity in the rhizosphere by supplying specific nutrients and ecological niche for inoculated microorganisms provided that both microorganisms and plants are diligently chosen. Tools at disposal for monitoring and controlling bioaugmentation are described in this chapter. These tools should be helpful to the better understanding of mechanisms involved in bioaugmentation as well as environmental impacts of such a technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YB, Liu F, Fennel DE, Hagglom MM (2008) Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments. FEMS Microbial Ecol 66:271–281

    CAS  Google Scholar 

  • Albareda M, Rodríguez-Navarro DN, Camacho M, Temprano FJ (2008) Alternatives to peat as a carrier for rhizobia inoculants: solid and liquid formulations. Soil Biol Biochem 40:2771–2779

    CAS  Google Scholar 

  • Alisi C, Musella R, Tasso F, Ubaldi C, Manzo S, Cremisini C, Sprocati AR (2009) Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance. Sci Total Env 407:3024–3032

    CAS  Google Scholar 

  • Alvey S, Crowley DE (1995) Influence of organic amendments on biodegradation of atrazine as a nitrogen source. J Environ Qual 24:1156–1162

    CAS  Google Scholar 

  • Atanaga HI (2006) Biodegradation of polyacyclic aromatic hydrocarbons in contaminated soil by biostimulation and bioaugmentation in the presence of copper(II) ions. World J Microb Biot 22:1145–1153

    Google Scholar 

  • Baek KH, Voon BD, Cho DH, Kim BH, Oh HM, Kim HS (2009) Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. J Microbial Biotech 19:339–345

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremeditaion of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Balthazor TM, Hallas LE (1986) Glyphosate-degrading microorganism from industrial activated sludge. Appl Environ Microb 51:432–434

    CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J, van der Lelie D (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile organic pollutants. Nat Biotechnol 22:583–588

    CAS  PubMed  Google Scholar 

  • Barbeau C, Deschenes L, Karamanev D, Comeau Y, Samson R (1997) Bioremediation of pentachlorophenol-contaminated soil by bioaugmentation using activated soil. Appl Microbiot Biot 48:745–752

    CAS  Google Scholar 

  • Barona A, Aranguiz I, Elias A (2001) Metal associations in soils before and after EDTA extractive decontamination: implications for the effectiveness of further clean-up procedures. Environ Pollut 113:79–85

    CAS  PubMed  Google Scholar 

  • Baxter J, Garton NJ, Cummings SP (2006) The impact of acrylonitrile and bioaugmentation on the biodegradation activity and bacterial community structure of a topsoil. Folia Microbiol 51:591–597

    CAS  Google Scholar 

  • Beaulieu M, Becaert V, Deschenes L, Villemur R (2000) Evolution of bacterial diversity during enrichment of PCP-degrading activated soils. Microb Ecol 40:345–355

    CAS  PubMed  Google Scholar 

  • Becker MW, Metge DW, Collins SA, Shapiro AM, Harvey RW (2003) Bacterial transport experiments in fractured crystalline bedrock. Ground Water 41:682–689

    CAS  PubMed  Google Scholar 

  • Belotte D, Curien JB, Maclean RC, Bell G (2003) An experimental test of local adaptation in soil bacteria. Evolution 57:27–36

    PubMed  Google Scholar 

  • Benimeli CS, Fuentes MS, Abate CM, Amoroso MJ (2008) Bioremediation of lindane-contaminated soil by Streptomyces sp. M7 and its effects on Zea mays growth. Int Biodeter Biodegr 61:233–239

    CAS  Google Scholar 

  • Benizri E, Nguyen C, Piutti S, Slezack-Deschaumes S, Philippot L (2007) Additions of maize root mucilage to soil changed the structure of the bacterial community. Soil Biol Biochemi 39:1230–1233

    CAS  Google Scholar 

  • Bento FM, Camargo FAO, Okeke B (2003) Bioremediation of soil contaminated by diesel oil. Braz J Microbiol 34:65–68

    Google Scholar 

  • Bento FM, Camargo FAO, Okeke B, William T (2005) Frankenberger Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation Bioresource Technol 96:1049–1055

    Google Scholar 

  • Berselli S, Milone G, Canepa P, Di Gioia D, Fava F (2004) Effects of cyclodextrins, humic substances and rhamnolipids on the washing of a historically contaminated soil and on the aerobic bioremediation of the resulting effluents. Biotechnol Bioeng 88:111–120

    CAS  PubMed  Google Scholar 

  • Bester K, Schäfer D (2009) Activated soil filters (bio filters) for the elimination of xenobiotics (micro-pollutants) from storm- and waste waters. Water Res 43:2639–2646

    CAS  PubMed  Google Scholar 

  • Bingemann CW, Varner JE, Martin WP (1953) The effect of the addition of organic materials on the decomposition of an organic soil. Proc Soil Sci Soc Am 17:34–38

    Google Scholar 

  • Bohn HL, McNeal BL, O’Connor GA (2001) Soil chemistry. Wiley, New York

    Google Scholar 

  • Boopathy R (2000) Factors limiting bioremediation technologies. Bioresource Technol 74:63–67

    CAS  Google Scholar 

  • Borges MT, Nascimento AG, Rocha UN, Totola MR (2008) Nitrogen starvation affects bacterial adhesion to soil. Braz J Microbiol 39:457–463

    PubMed  Google Scholar 

  • Bouchez T, Patureau D, Dabert BP, Juretschko S, Doré J, Delgenès P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190

    CAS  PubMed  Google Scholar 

  • Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol 26:483–489

    CAS  PubMed  Google Scholar 

  • Caccavo F, Ramsing NB, Costerton JW (1996) Morphological and metabolic responses to starvation by the dissimilatory metal-reducing bacterium Shewanella alga BrY. Appl Environ Microb 62:4678–4682

    CAS  Google Scholar 

  • Carmichael LM, Pfaender FK (1997) The effect of inorganic and organic supplements on the microbial degradation of phenanthrene and pyrene in soils. Biodegradation 8:1–13

    CAS  PubMed  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbio Biot 16:79–101

    CAS  Google Scholar 

  • Cassidy MB, Mullineers H, Lee H, Trevors JT (1997) Mineralization of pentachlorophenol in a contaminated soil by Pseudomonas sp UG30 cells encapsulated in κ-carrageenan. J Ind Microbiol Biot 19:43–48

    CAS  Google Scholar 

  • Chavez FP, Gordillo F, Jerez CA (2006) Adaptive responses and cellular behaviour of biphenyl-degrading bacteria toward polychlorinated biphenyls. Biotechnol Adv 24:309–320

    CAS  PubMed  Google Scholar 

  • Checkai RT, Corey RB, Helmke PA (1987) Effect of ionic and complexed metal concentrations on plant uptake of cadmium and micronutrient cations from solution. Plant Soil 99:335–345

    CAS  Google Scholar 

  • Chen YM, Lin TF, Huang C, Lin JC, Hsieh FM (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J Hazard Mater 148:660–670

    CAS  PubMed  Google Scholar 

  • Ciccillo F, Fiore A, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (2002) Effects of two different application methods of Burkholderia ambifaria MCI 7 on plant growth and rhizospheric bacterial diversity. Environ Microbiol 4:238–245

    PubMed  Google Scholar 

  • Colores GM, Schmidt SK (1999) Colonization of contaminated soil by an introduced bacterium: effects of initial pentachlorophenol levels on the survival of Sphingomonas chlorophenolica strain RA2. J Ind Microbio Biot 23:326–331

    CAS  Google Scholar 

  • Comeau Y, Greer CW, Samson RR (1993) Role of inoculum preparation and density on the bioremediation of 2, 4-D-contaminated soil by bioaugmentation. Appl Microbiol Biot 38:681–687

    CAS  Google Scholar 

  • Csillag J, Partay G, Lukacs A, Bujtas K, Nemeth T (1999) Extraction of soil solution for environmental analysis. Int J Environ Anal Chem 74:305–324

    CAS  Google Scholar 

  • Cunliffe M, Kertesz MA (2006) dynamics and polycyclic aromatic hydrocarbon degradation in aged and freshly PAH-contaminated soils. Environ Pollut 144:228–237

    CAS  PubMed  Google Scholar 

  • Cunningham CJ, Ivshina IB, Lozinsky VI, Kuyukina MS, Philp JC (2004) Bioremediation of diesel-contaminated soil by microorganisms immobilised in polyvinyl alcohol. Int Bioteter Biodegr 54:167–174

    CAS  Google Scholar 

  • D’Amours D, Samson R, Deschenes L (2008) Environmental innocuousness of the activation of a microbial consortium from creosote-contaminated soil in a slurry bioreactor. J Environ Eng Sci 7:581–595

    Google Scholar 

  • D’Annibale A, Ricci M, Leonardi V, Quaratino D, Mincione E, Petruccioli M (2005) Degradation of aromatic hydrocarbons by white-rot fungi in a historically contaminated soil. Biotechnol Bioeng 90:723–731

    PubMed  Google Scholar 

  • Daane LL, Haggblom MM (1999) Earthworm egg capsules as vectors for the environmental introduction of biodegradative bacteria. Appl Environ Microb 65:2376–2381

    CAS  Google Scholar 

  • de Weert S, Dekk'ers LC, Kuiper I, Bloemberg GV, Lugtenberg BJJ (2004) Generation of enhanced competitive root-tip-colonizing Pseudomonas bacteria through accelerated evolution. J Bacteriol 186:3153–3159

    PubMed Central  PubMed  Google Scholar 

  • Dean JR (2010) Heavy metal bioavailability and bioaccessibility in soil. Meth Mol Biol 599:15–36

    CAS  Google Scholar 

  • Dechesne A, Pallud C, Bertolla F, Grundmann GL (2005) Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria. Appl Environ Microb 71:8123–8131

    CAS  Google Scholar 

  • Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W (2001) Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microb 3:649–657

    CAS  Google Scholar 

  • Delle Site A (2000) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants: a review. J Phys Chem Ref Data 30:187–439

    Google Scholar 

  • Dercova K, Sejakova Z, Skokanova M, Barancikova G, Makovnikova J (2006) Potential use of organomineral complex (OMC) for bioremediation of pentachlorophenol (PCP) in soil. Int Biodeter Biodegr 58:248–253

    CAS  Google Scholar 

  • Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Biores Technol 101:1558–1569

    CAS  Google Scholar 

  • Di Gregorio S, Barbafieri M, Lampis S, Sanangelantoni AM, Tassi E, Vallini G (2006) Combined application of Triton X-100 and Sinorhizobium sp. Pb002 inoculum for the improvement of lead phytoextraction by Brassica juncea in EDTA amended soil. Chemosphere 63:293–299

    PubMed  Google Scholar 

  • Di Simine CD, Sayer JA, Gadd GM (1998) Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fer Soils 28:87–94

    Google Scholar 

  • Di Toro S, Zanaroli G, Varese GC, Marchisio VF, Fava F (2008) Role of Enzyveba in the aerobic bioremediation and detoxification of a soil freshly contaminated by two different diesel fuels. Int Biodeter Biodegrad 62:153–161

    Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    CAS  PubMed  Google Scholar 

  • Diels L, Lookman R (2007) Microbial systems for in-situ soil and groundwater remediation conference information. In: Marmiroli N, Samotokin B (eds) Advanced science and technology for biological decontamination of sites affected by chemical and radiological nuclear agents, earth and environmental sciences, vol 75. NATO Science series IV, Springer ISSN: 1568–1238 pp 61–77

    Google Scholar 

  • Diels L, De Smet M, Hooyberghs L, Corbisier P (1999) Heavy metals bioremediation of soil. Mol Biotechnol 12:154–158

    Google Scholar 

  • Diplock EE, Mardlin DP, Killham KS, Paton GI (2009) Predicting bioremediation of hydrocarbons: laboratory to field scale. Environ Pollut 157:1831–1840

    CAS  PubMed  Google Scholar 

  • Dominguez RF, da Silva MLB, McGuire TM, Adamson D, Newell CJ, Alvarez PJJ (2008) Aerobic bioremediation of chlorobenzene source-zone soil in flow-through columns: performance assessment using quantitative PCR. Biodegradation 19:545–553

    CAS  PubMed  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biot 59:143–152

    CAS  Google Scholar 

  • Dubbin WE, Ander EL (2003) Influence of microbial hydroxamate siderophores on Pb(II) desorption from α-FeOOH. Appl Geochem 18:1751–1756

    CAS  Google Scholar 

  • Dueri S, Castro-JiménezJ CJMZ (2008) On the use of the partitioning approach to derive environmental quality standards (EQS) for persistent organic pollutants (POPs) in sediments: a review of existing data. Sci Total Environ 403:23–33

    CAS  PubMed  Google Scholar 

  • Duponnois R, Kisa M, Assigbetse K, Prin Y, Thioulouse J, Issartel M, Moulin P, Lepage M (2006) Fluorescent pseudomonads occuring in Macrotermes subhyalinus mound structures decrease Cd toxicity and improve its accumulation in sorghum plants. Sci Total Environ 370:391–400

    CAS  PubMed  Google Scholar 

  • Duquenne P, Chenu C, Richard G, Catroux G (1999) Effect of carbon source supply and its location on competition between inoculated and established bacterial strains in sterile soil microcosm. FEMS Microbiol Ecol 29:331–339

    CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    CAS  PubMed  Google Scholar 

  • Fang Y, Logan BE (1999) Bacterial transport in gas-sparged porous medium. J Environ Eng-ASCE 125:668–673

    CAS  Google Scholar 

  • Fernandes VC, Albergaria JT, Oliva-Teles T, Delerue-Matos C, De Marco P (2009) Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil. Biodegradation 20:375–382

    CAS  PubMed  Google Scholar 

  • Field JA, Sierra-Alvarez R (2008) Microbial transformation and degradation of polychlorinated biphenyls. Environ Pollut 155:1–12

    CAS  PubMed  Google Scholar 

  • Forsyth JV, Tsao YM, Bleam RD (1995) Bioremediation: when is augmentation needed. In: Hinchee RE, Fredrickson J, Alleman BC (eds) Bioaugmentation for site remediation. Battelle, Columbus, pp 1–14

    Google Scholar 

  • Franzetti P, Caredda C, Ruggeri L, La Colla E, Tamburini PM, Bestetti G (2009) Potential application of surface active compounds by Gordonia sp. strain BS29 in soil remediation technologies. Chemosphere 75:801–807

    CAS  PubMed  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution: a working biotechnology? Trends Biotechnol 11:353–359

    CAS  PubMed  Google Scholar 

  • Garon D, Krivobok S, Wouessidjewe D, Seigle-Murandi F (2002) Influence of surfactants on solubilization and fungal degradation of fluorene. Chemosphere 47:303–309

    CAS  PubMed  Google Scholar 

  • Geiszinger A, Bonnineau C, Faggiano L, Guasch H, Lopez-Doval JC, Proia L, Ricart M, Ricciardi F, Romani A, Rotter S, Munoz I, Schmitt-Jansen M, Sabater S (2009) The relevance of the community approach linking chemical and biological analyses in pollution assessment. TRAC Trend Anal Chem 28:619–626

    CAS  Google Scholar 

  • Gentili AR, Cubitto MA, Ferrero M, Rodriguez MS (2006) Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeter Biodegradation 57:222–228

    CAS  Google Scholar 

  • Gentry TJ, Christopher R, Ian P (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Env Sci Tec 34:447–494

    CAS  Google Scholar 

  • Gentry TJ, Wickham GS, Schadt CW, He Z, Zhou J (2006) Microarray applications in microbial ecology research. Microbiol Ecol 52:159–175

    CAS  Google Scholar 

  • Ghazali M, Rahman RNZA, Salleh AB, Basri M (2004) Biodegradation of hydrocarbons in soil by microbial consortium. Int Biodeterior Biodegrad 54:61–67

    CAS  Google Scholar 

  • Girlanda M, Favero-Longo SE, Lazzari A, Segreto R, Perotto S, Siniscalco C (2009) Indigenous microfungi and plants reduce soil nonylphenol contamination and stimulate resident microfungal communities. Appl Microbiol Biot 82:359–370

    CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  PubMed  Google Scholar 

  • Goddard VJ, Bailey MJ, Darrah P, Lilley AK, Thompson IP (2001) Monitoring temporal and spatial variation in rhizosphere bacterial population diversity: a community approach for the improved selection of rhizosphere competent bacteria. Plant Soil 232:181–193

    CAS  Google Scholar 

  • Goldman RP, Brown SP (2009) Making sense of microbial consortia using ecology and evolution. Trends Biotechnol 27:3–4

    CAS  PubMed  Google Scholar 

  • Goux S, Shapir N, El Fantroussi S, Lelong S, Agathos SN, Pussemier L (2003) Long term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water Air Soil Pollut Focus 3:131–142

    CAS  Google Scholar 

  • Grundmann S, Fuß R, Schmid M, Laschinger M, Ruth B, Schulin R, Munch JC, Reiner Schroll R (2007) Application of microbial hot spots enhances pesticide degradation in soils. Chemosphere 68:511–517

    CAS  PubMed  Google Scholar 

  • Habe H, Ide K, Yotsumoto M, Tsuji H, Hirano H, Widada J, Yoshida T, Nojiri H, Omori T (2001) Preliminary examinations for applying a carbazole-degrader, Pseudomonas sp. strain CA10, to dioxin-contaminated soil remediation. Appl Microbiol Biotechnol 56:788–795

    CAS  PubMed  Google Scholar 

  • Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and blostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935

    CAS  Google Scholar 

  • Han H, Tang J, Jiang H, Zhang ML, Liu Z (2008) Synergy between fungi and bacteria in fungi-bacteria augmented remediation of petroleum-contaminated soil. Huanjing Kexue 29:189–195

    PubMed  Google Scholar 

  • Hazen TC, Stahl DA (2006) Using the stress response to monitor process control: pathways to more effective bioremediation. Curr Opin Biotech 17:285–290

    CAS  PubMed  Google Scholar 

  • Heinaru E, Merimaa M, Viggor S, Lehiste M, Leito I, Truu J, Heinaru A (2005) Biodegradation efficiency of functionally important populations selected for bioaugmentation in phenol- and oil-polluted area. FEMS Microbiol Ecol 51:363–373

    CAS  PubMed  Google Scholar 

  • Herman DC, Artiola JF, Miller RM (1995) Removal of cadmium, lead, and zinc from soil by a rhamnolipid biosurfactant. Environ Sci Technol 29:2280–2285

    CAS  PubMed  Google Scholar 

  • Hesselsoe M, Bjerring ML, Henriksen K, Loll P, Nielsen JL (2008) Method for measuring substrate preferences by individual members of microbial consortia proposed for bioaugmentation. Biodegradation 19:621–633

    PubMed  Google Scholar 

  • Hong Q, Zhang ZH, Hong Y, Li S (2007) A microcosm study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. Int Biodeter Biodegrad 59:55–61

    CAS  Google Scholar 

  • Hood ED, Major DW, Quinn JW, Yoon WS, GavastarA EEA (2008) Demonstration of enhanced bioremediation in a TCE source area at Launch Complex 34, Cape Canaveral Air Force Station. Ground Wat Monitor Remed 28:98–107

    CAS  Google Scholar 

  • Imfeld G, Braeckevelt M, Kuschk P, Richnow HH (2009) Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74:349–362

    CAS  PubMed  Google Scholar 

  • Iwamoto T, Nasu M (2001) Current bioremediation practice and perspective. J Biosci Bioeng 92:1–8

    CAS  PubMed  Google Scholar 

  • Jacques RJS, Okeke BC, Bento FM, Teixeira AS, Peralba MCR, Camargo FAO (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresource Technol 99:2637–2643

    CAS  Google Scholar 

  • Jansson JK (2003) Marker and reporter genes: illuminating tools for environmental microbiologists. Curr Opin Microbiol 6:310–316

    CAS  PubMed  Google Scholar 

  • Jansson JK, Björklöf K, Elvang AM, Jorgensen KS (2000) Biomarkers for monitoring efficacy of bioremediation by microbial inoculants. Environ Pollut 107:217–223

    CAS  PubMed  Google Scholar 

  • Jézéquel K, Lebeau T (2008) Soil bioaugmentation by free and immobilized bacteria to reduce potentially phytoavailable cadmium. Bioresource Technol 99:690–698

    Google Scholar 

  • Jézéquel K, Perrin J, Lebeau T (2005) Bioaugmentation with a Bacillus sp. to reduce the phytoavailable Cd of an agricultural soil: comparison of free and immobilized microbial inocula. Chemosphere 59:1323–1331

    PubMed  Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    CAS  PubMed  Google Scholar 

  • Johnsen AR, Schmidt S, Hybholt TK, Henriksen S, Jacobsen CS, Andersen O (2007) community of a PAH-polluted soil but marginal effect on PAH degradation when priming with bioremediated soil dominated by mycobacteria. Appl Environ Microbiol 73:1474–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    CAS  Google Scholar 

  • Jorgensen SE, Mitsch WJ (1980) Classification and examples of ecological engineering. In: Mitsch WJ, Jorgensen SE (eds) Ecological engineering: an introduction to ecotechnology. Wiley, New York, pp 13–19

    Google Scholar 

  • Juan Antonio Zermeño-Eguia Liz, Janet Jan-Roblero, Javier Zavala-Díaz de la Serna, Arturo Vera-Ponce de León and César Hernández-Rodríguez (2009). Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World Journal of Microbiology and Biotechnology Volume 25, Number 1, 165–170

    Google Scholar 

  • Juhanson J, Truu J, Heinaru E, Heinaru A (2009) Survival and catabolic performance of introduced Pseudomonas strains during phytoremediation and bioaugmentation field experiment. FEMS Microbiol Ecol 70:446–455

    CAS  PubMed  Google Scholar 

  • Kabata-Pendias A (2000) Trace elements in soils and plants. CRC, Boca Raton

    Google Scholar 

  • Kao CM, Liu JK, Chen YL, Chai CT, Chen SC (2005) Factors affecting the biodegradation of PCP by Pseudomonas mendocina NSYSU. J Haz Mater 124:68–73

    CAS  Google Scholar 

  • Karagiannidis N, Nikolaou N (2000) Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am J Enol Vitic 51:269–275

    CAS  Google Scholar 

  • Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin E (2000) Enhancement of phytoextraction of Zn, Cd and Cu from calcareous soil: the use NTA and sulfur amendments. Environ Sci Technol 34:1778–1783

    CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation-an enhanced form of phytoremediation. J Zhejiang Univ-Sc B 7:503–514

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    CAS  PubMed  Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manage 71:95–122

    PubMed  Google Scholar 

  • Kinsall BL, Wilson GV, Palumbo AV (2000) The effect of soil heterogeneity on the vadose zone transport of bacteria for bioaugmentation. In: Wickramanayake GB, Gavaskar AR, Alleman BC, Magar VS (eds) Bioremediation and phytoremediation of chlorinated and recalcitrant compounds. Battelle, Columbus, California, pp 395–403

    Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mole Plant Microbe Int 14:1197–1205

    CAS  Google Scholar 

  • Kuiper I, Lagnedijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mole Plant Microbe Int 17:6–15

    CAS  Google Scholar 

  • Kumar M, Leon V, De Sisto MA, Ilzins OA (2006) Enhancement of oil degradation by co-culture of hydrocarbon degrading and biosurfactant producing bacteria. Pol J Microbiol 55:139–146

    CAS  PubMed  Google Scholar 

  • Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337

    CAS  PubMed  Google Scholar 

  • Lamberts RF, Johnsen AR, Andersen O, Christensen JH (2008) Univariate and multivariate characterization of heavy fuel oil weathering and biodegradation in soil. Environ Pollut 156:297–305

    CAS  PubMed  Google Scholar 

  • LaPara TM, Zakharova T, Nakatsu CH, Konopka A (2002) Functional and structural adaptations of bacterial communities growing on particulate substrates under stringent nutrient limitation. Microbiol Ecol 44:317–326

    CAS  Google Scholar 

  • Lappin-Scott HM, Costerton JW (1992) Ultramicrobacteria and their biotechnological applications. Curr Opin Biotech 3:283–285

    CAS  Google Scholar 

  • Lebeau T, Bagot D, Jézéquel K, Fabre B (2002) Cadmium biosorption by free and immobilised microorganisms cultivated in a liquid soil extract medium: effects of Cd, pH and techniques of culture. Sci Total Environ 291:73–83

    CAS  PubMed  Google Scholar 

  • Lebeau T, Braud A, Jézéquel K (2008) Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review. Environ Pollut 153:497–522

    CAS  PubMed  Google Scholar 

  • Li Q, Logan BE (1999) Enhancing bacterial transport for bioaugmentation of aquifers using low ionic strength solutions and surfactants. Water Res 33:1090–1100

    CAS  Google Scholar 

  • Li Y, Dick WA, Tuovinen OH (2004) Fluorescence microscopy for visualization of soil microorganisms: a review. Soil Biol Biochem 39:301–311

    Google Scholar 

  • Lima D, Viana P, André S, Chelinho S, Costa C, Ribeiro R, Sousa JP, Fialho AM, Viegas CA (2009) Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: the effectiveness of bioaugmentation and biostimulation approaches. Chemosphere 74:187–192

    CAS  PubMed  Google Scholar 

  • Liz JA, Jan-Roblero J, Zavala-Díaz de la Serna J, Vera-Ponce de León A, Hernández-Rodríguez C (2009) Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. Chem Mater Sci 25:165–170

    Google Scholar 

  • Löffler FE, Edwards EA (2006) Harnessing microbial activities for environmental cleanup. Curr Opin Biotech 17:274–284

    PubMed  Google Scholar 

  • López-Gutiérrez JC, Philippot L, Martin-Laurent F (2005) Impact of maize mucilage on atrazine mineralization and atzC abundance. Pest Manage Sci 61:838–844

    Google Scholar 

  • Lovley DR, Lloyd JR (2000) Microbes with a mettle for bioremediation. Nat Biotechnol 18:600–601

    CAS  PubMed  Google Scholar 

  • Majewska M, Kurek E, Rogalski J (2007) Microbially mediated cadmium sorption/desorption processes in soil amended with sewage sludge. Chemosphere 67:724–730

    CAS  PubMed  Google Scholar 

  • Mancera-Lopez M, Esparza-Garcia F, Chavez-Gomez B, Rodriguez-Vazquez R, Saucedo-Castaneda G, Barrera-Cortes J (2008) Bioremediation of an aged hydrocarbon-contaminated soil by a combined system of biostimulation-bioaugmentation with filamentous fungi. Int Biodeter Biodegrad 61:151–160

    CAS  Google Scholar 

  • Manefield M, Whiteley AS, Bailey MJ (2004) What can stable isotope probing do for bioremediation? Int Biodeter Biodegrad 54:163–166

    CAS  Google Scholar 

  • Mariano AP, Bonotto DM, de Angelis DD, Contiero P (2008) Biodegradability of commercial and weathered diesel oils. Braz J Microbiol 39:133–142

    PubMed  Google Scholar 

  • Martin M, Gibello A, Lobo C, Nande M, Garbi C, Fajardo C, Barra-Caracciolo A, Grenni P, Martinez-Inigo MJ (2008) Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples. Chemosphere 71:703–710

    CAS  PubMed  Google Scholar 

  • Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    CAS  PubMed  Google Scholar 

  • Matz C, Kjelleberg S (2005) Off the hook: how bacteria survive protozoan grazing. Trends Microbiol 13:302–307

    CAS  PubMed  Google Scholar 

  • McKinlay RG, Kasperek K (1999) Observations on decontamination of herbicide-polluted water by marsh plant systems. Water Res 33:505–511

    CAS  Google Scholar 

  • Mehmannavaz R, Prasher SO, Ahmad D (2001) Effect of bioaugmentation on microbial transport, water infiltration, moisture loss, and surface hardness in pristine and contaminated soils. J Environ Sci Heal A 36:123–139

    CAS  Google Scholar 

  • Mench M, Baize D (2004) contamination des sols et de nos aliments d’origine végétale par les éléments en traces Courrier de l’environnement de l’INRA n52, septembre 2004 31–56

    Google Scholar 

  • Mertens B, Boon N, Verstraete W (2006) Slow-release inoculation allows sustained biodegradation of gamma-hexachlorocyclohexane. Appl Environ Microb 72:622–627

    CAS  Google Scholar 

  • Mitsch WJ, Jørgensen SE (2004) Ecological engineering and ecosystem restoration. Wiley, New York

    Google Scholar 

  • Mohan SV, Sirisha K, Rao RS, Sarma PN (2007) Bioslurry phase remediation of chlorpyrifos contaminated soil: process evaluation and optimization by Taguchi design of experimental (DOE) methodology. Ecotox Environ Safe 68:252–262

    CAS  Google Scholar 

  • Monard C, Martin-Laurent F, Vecchiato C, Francez AJ, Vandenkoornhuyse P, Binet F (2008) Combined effect of bioaugmentation and bioturbation on atrazine degradation in soil. Soil Biol Biochem 40:2253–2259

    CAS  Google Scholar 

  • Moran AC, Muller A, Manzano M, Gonzalez B (2006) Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. ADP. J Appl Microbiol 101:26–35

    CAS  PubMed  Google Scholar 

  • Moslemy P, Neufeld RJ, Guiot SR (2002) Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol Bioeng 80:175–184

    CAS  PubMed  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    CAS  PubMed  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF, James S, Bennett HPJ (1999) Metal removal from contaminated soils and sediments by biosurfactants surfactin. Environ Sci Technol 33:3812–3820

    CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Haz Mater 85:111–125

    CAS  Google Scholar 

  • Nam IH, Hong HB, Kim YM, Kim BH, Murugesan K, Chang YS (2005) Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. Water Res 39:4651–4660

    CAS  PubMed  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110

    CAS  PubMed  Google Scholar 

  • Newcombe DA, Crowley DE (1999) Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl Microbiol Biot 51:877–882

    CAS  Google Scholar 

  • Odum HT (1962) Ecological tools and their use Man and the ecosystem. In: Waggoner PE, Ovington JD (eds) Conference of the suburban forest and ecology. Lockwood, New Zealand, pp 57–75

    Google Scholar 

  • Odum HT, Odum B (2003) Concepts and methods of ecological engineering. Ecol Eng 20:339–361

    Google Scholar 

  • Ohtsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biot 65:250–258

    CAS  Google Scholar 

  • Olaniran AO, Pillay D, Pillay B (2006) Biostimulation and bioaugmentation enhances aerobic biodegradation of dichloroethenes. Chemosphere 63:600–608

    CAS  PubMed  Google Scholar 

  • Orphan VJ (2009) Methods for unveiling cryptic microbial partenerships in nature. Curr Opin Microbiol 12:231–237

    CAS  PubMed  Google Scholar 

  • Otte MP, Gagnon J, Comeau Y, Matte N, Greer CW, Samson R (1994) Activation of an indifenous microbial consortium for bioaugmentation of pentachlorophenol/creosote contaminated soils. Appl Microbiol Biot 40:926–932

    CAS  Google Scholar 

  • Petric I, Hrsak D, Fingler S, Voncina E, Cetkovic H, Bejonga KA, Udikovic KN (2007) Enrichment and characterization of PCB-degrading bacteria as potential seed cultures for bioremediation of contaminated soil. Food technol biotech 45:11–20

    CAS  Google Scholar 

  • Pignatello JJ (1998) Soil organic matter as a nanoporous sorbent of organic pollutants. Adv Colloid Interface Sci 76–77:445–467

    Google Scholar 

  • Plangklang P, Reungsang A (2009) Bioaugmentation of carbofuran residues in soil using Burkholderia cepacia PCL3 adsorbed on agricultural residues. Int Biodeter Biodegrad 63:515–522

    CAS  Google Scholar 

  • Portier R, Bianchini M, Fujisaki K, Henry C, McMillin D (1989) Comparison of effective toxicant biotransformation by autochthonous microorganisms and commercially available cultures in the in situ reclamation of abandoned industrial sites. Schriftenr Ver Wasser Boden Lufthyg 80:273–292

    CAS  PubMed  Google Scholar 

  • Priestley JT, Coleman NV, Duxbury T (2006) Growth rate and nutrient limitation affect the transport of Rhodococcus sp strain DN22 through sand. Biodegradation 17:571–576

    CAS  PubMed  Google Scholar 

  • Prosser JI, Rangel-Castro JI, Killham K (2006) Studying plant-microbe interactions using stable isotope technologies. Curr Opin Biotech 17:98–102

    CAS  PubMed  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Google Scholar 

  • Rahm BG, Chauhan S, Holmes VF, Macbeth TW, Sorenson KSJ, Alvarez-Cohen L (2006) Molecular characterization of microbial populations at two sites with differing reductive dechlorination abilities. Biodegradation 17:523–534

    CAS  PubMed  Google Scholar 

  • Rao RS, Kumar CG, Prakasham RS, Hobbs PJ (2008) The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol J 3:510–523

    CAS  PubMed  Google Scholar 

  • Riser-Roberts E (1998) Remediation of petroleum contaminated soil: biological, physical, and chemical processes. CRC, Boca Raton

    Google Scholar 

  • Rittmann BE, Hausner M, Löffler FE, Love NG, Muyzer G, Okabe S, Oerther DB, Peccia J, Raskin L, Wagner M (2006) A vista for microbial ecology and environmental biotechnology. Environ Sci Technol 40:1096–1103

    PubMed  Google Scholar 

  • Romantschuk M, Sarand I, Petanen T, Peltola R, Jonsson-Vihanne M, Koivula T, Yrjala K, Haahtela K (2000) Means to improve the effect of in situ bioremediation of contaminated soil: an overview of novel approaches. Environ Pollut 107:179–185

    CAS  PubMed  Google Scholar 

  • Rousseau M, Ruy S, Di Pietro L, Angulo-Jaramillo R (2003) Unsaturated hydraulic conductivity of structured soils from a kinematic wave approach. J Hydraul Res 42:83–91

    Google Scholar 

  • Ruberto L, Vazquez SC, Mac Cormack WP (2003) Effectiveness of the natural bacterial flora, biostimulation and bioaugmentation on the bioremediation of a hydrocarbon contaminated Antarctic soil. Int Biodeter Biodegrad 52:115–125

    CAS  Google Scholar 

  • Sarand I, Timonen S, Rajamäki M, Peltola R, Nurmiaho-Lassila EL, Koivula T, Haahtela K, Romantschuk M, Sen R (1998) Biofilms, degradative fluorescent Pseudomonads and bioremediation potential in the scots pine mycorrhizosphere exposed to petroleum derived hydrocarbons. FEMS Microb Ecol 27:115–126

    CAS  Google Scholar 

  • Schwartz E, Scow KM (2001) Repeated inoculation as a strategy for the remediation of low concentrations of phenanthrene in soil. Biodegradation 12:201–207

    CAS  PubMed  Google Scholar 

  • Scow KM, Hicks KA (2005) Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotech 16:246–253

    CAS  PubMed  Google Scholar 

  • Semple KT, Doick KJ, Burauel P, Craven A, Jones KC, Harms H (2004) Defining bioavailability and bioaccessibility for the risk assessment and remediation of soils and sediment is complicated. Environ Sci Tech 38:209A–212A

    Google Scholar 

  • Singer AC, Gilbert ES, Luepromchai E, Crowley DE (2000) Bioremediation of polychlorinated biphenyl-contaminated soil using carvone and surfactant-grown bacteria. Appl Microbiol Biot 54:838–843

    CAS  Google Scholar 

  • Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23:74–77

    CAS  PubMed  Google Scholar 

  • Singh R, Paul D, Jain R (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397

    CAS  PubMed  Google Scholar 

  • Singh A, van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25:99–121

    CAS  PubMed  Google Scholar 

  • Siripattanakul S, Wirojanagud W, McEvoy JM, Casey FXM, Khan E (2009) A feasibility study of immobilized and free mixed culture bioaugmentation for treating atrazine in infiltrate. J Haz Mater 168:1373–1379

    CAS  Google Scholar 

  • Smith KE, Schwab AP, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment: a greenhouse feasibility study. J Environ Qual 36:239–244

    CAS  PubMed  Google Scholar 

  • Sobiecka E, Cedzynska K, Bielski C, Antizar-Ladislao B (2009) Biological treatment of transformer oil using commercial mixtures of microorganisms. Int Biodeter Biodegrad 63:328–333

    CAS  Google Scholar 

  • Sorvari J, Antikainen R, Kosola ML, Hokkanen P, Haavisto T (2009) Eco-efficiency in contaminated land management in Finland: barriers and development needs. J Environ Manage 90:1715–1727

    CAS  PubMed  Google Scholar 

  • Stallwood B, Shears J, Williams PA, Hughes KA (2005) Low temperature bioremediation of oil-contaminated soil using biostimulation and bioaugmentation with a Pseudomonas sp. from maritime Antarctica. J Appl Microbiol 99:794–802

    CAS  PubMed  Google Scholar 

  • Steinberg CEW, Sturzenbaum SR, Menzel R (2008) Genes and environment: striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Env 400:142–161

    CAS  Google Scholar 

  • Stottmeister U, Wiener A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H (2003) Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol Adv 22:93–117

    CAS  PubMed  Google Scholar 

  • Straube WL, Jones-Meehan J, Pritchard PH, Jones WR (1999) Bench-scale optimization of bioaugmentation strategies for treatment of soils contaminated with high molecular weight polyaromatic hydrocarbons. Resour Conser Recy 27:27–37

    Google Scholar 

  • Straube WL, Nestler CC, Hansen LD, Ringleberg D, Pritchard PH, Jones-Meehan JJ (2003) Remediation of Polyaromatic Hydrocarbons (PAHs) through Landfarming with Biostimulation and Bioaugmentation Acta Biotechnologica 23:179–196

    Google Scholar 

  • Streger SH, Vainberg S, Dong HL, Hartzinger PB (2002) Enhancing transport of Hydrogenophaga flava ENV735 for bioaugmentation of aquifers contaminated with methyl tert-butyl ether. Appl Environ Microbiol 68:5571–5579

    CAS  PubMed Central  PubMed  Google Scholar 

  • Strigul NS, Kravchenko LV (2006) Mathematical modeling of PGPR inoculation into the rhizosphere. Environ Model Softw 21:1158–1171

    Google Scholar 

  • Strong LC, McTavish H, Sadowsky MJ, Wackett LP (2000) Field-scale remediation of atrazine-contaminated soil using recombinant Escherichia coli expressing atrazine chlorohydrolase. Environ Microbiol 2:91–98

    CAS  PubMed  Google Scholar 

  • Sung K, Kim J, Munster CL, Corapcioglu MY, Park S, Drew MC, Chang YY (2006) A simple approach to modeling microbial biomass in the rhizosphere. Ecol Model 190:277–286

    CAS  Google Scholar 

  • Talley JW, Cui XF, Berveiler P (2007) Distribution and bioremediation of PAHs among different particle classes found in a contaminated surface soil. In: Li S, Wang Y, Cao F, Huang P, Zhang Y (eds) Progress in environmental science and technology, Science Press, Beijing, vol 1. pp 1159–1164

    Google Scholar 

  • Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7:909–915

    CAS  PubMed  Google Scholar 

  • Thouand G, Bauda P, Oudot J, Kirsch G, Sutton C, Vidalie JF (1999) Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can J Microbiol 45:106–115

    CAS  PubMed  Google Scholar 

  • Tixier C, Sancelme M, Aït-Aïssa S, Widehem P, Bonnemoy F, Cuer A, Truffaut N, Veschambre H (2002) Biotransformation of phenylurea herbicides by a soil bacterial strain, Arthrobacter sp. N2: structure, ecotoxicity and fate of diuron metabolite with soil fungi. Chemosphere 46:519–526

    CAS  PubMed  Google Scholar 

  • Tongarun R, Luepromchai E, Vangnai AS (2008) Natural attenuation, biostimulation, and bioaugmentation in 4-chloroaniline-contaminated soil. Curr Microbiol 56:182–188

    CAS  PubMed  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    CAS  Google Scholar 

  • Trindade PVO, Sobral LG, Rizzo ACL, Leite SGF, Soriano AU (2005) Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere 58:515–522

    CAS  PubMed  Google Scholar 

  • Truu J, Talpsep E, Vedler E, Heinaru E, Heinaru A (2003) Enhanced biodegradation of oil shale chemical industry solid wastes by phytoremediation and bioaugmentation. Oil Shale 20:421–428

    CAS  Google Scholar 

  • Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives TNT, RDX, and HMX by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microb 70:508–517

    Google Scholar 

  • van der Gast CJ, Whiteley AS, Starkey M, Knowles CJ, Thompson IP (2003) Bioaugmentation strategies for remediating mixed chemical effluents. Biotechnol Prog 19:1156–1161

    PubMed  Google Scholar 

  • van der Gast CJ, Whiteley AS, Thompson IP (2004) Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ Microbiol 6:254–263

    PubMed  Google Scholar 

  • van der Gast CJ, Jefferson B, Reid E, Robinson T, Bailey MJ, Judd SJ, Thompson IP (2006) Bacterial diversity is determined by volume in membrane bioreactors. Environ Microbiol 8:1048–1055

    PubMed  Google Scholar 

  • van Dillewijn P, Caballero A, Paz JA, Gonzalez-Perez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2, 4, 6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383

    PubMed  Google Scholar 

  • van Veen JA, van Overbeek LS, van Elsas JD (1997) Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol Rev 61:121–135

    PubMed Central  PubMed  Google Scholar 

  • Verstraete W (2007) Microbial ecology and environmental biotechnology. ISME J 1:4–8

    PubMed  Google Scholar 

  • Verstraete W, Wittelbolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126

    CAS  Google Scholar 

  • Vijgen J (2002). Summary report on technical and legal barriers for the introduction of ex-situ biological soil treatment in the EU member states. EU Commission, Directorate General Research

    Google Scholar 

  • Vogel TM (1996) Bioaugmentation as a soil bioremediation approach. Curr Opin Biotechnol 7:311–316

    CAS  PubMed  Google Scholar 

  • Vogel TM, Walter MV (2001) Bioaugmentation. In: Hurst CJ, Crawford RL, Knudsen GR, McInerney MJ, Stetzenbach LD (eds) Manual of environmental microbiology. American Society for Microbiology, Washington, pp 952–959

    Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250

    CAS  PubMed  Google Scholar 

  • Wang G, Gentry TJ, Grass G, Josephson K, Rensing C, Pepper IL (2004) Real-time PCR quantification of a green fluorescent protein-labeled, genetically engineered Pseudomonas putida strain during 2-chlorobenzoate degradation in soil. FEMS Microbiology Letters 233:307–314

    Google Scholar 

  • Wang S, Mulligan CN (2004) An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere 57:1079–1089

    PubMed  Google Scholar 

  • Wang QY, Zhou DM, Cang L (2009) Microbial and enzyme properties of apple orchard soil as affected by long-term application of copper fungicide. Soil Biol Biochem 41:1504–1509

    CAS  Google Scholar 

  • Weston A, Balba T (2003) Bioaugmentation. Innov Technol Group 3:1–2

    Google Scholar 

  • Widada J, Nojiri H, Yoshida T, Habe H, Omori T (2002) Enhanced degradation of carbazole and 2,3-dichlorodibenzo-p-dioxin in soils by Pseudomonas resinovorans strain CA10. Chemosphere 49:485–491

    CAS  PubMed  Google Scholar 

  • Wolicka D, Suszek A, Borkowski A, Bielecka A (2009) Application of aerobic microorganisms in bioremediation in situ of soil contaminated by petroleum products. Bioresource Technol 100:3221–3227

    CAS  Google Scholar 

  • Wu YC, Luo YM, Zou DX, Ni JZ, Liu WX, Teng Y, Li ZG (2008) Bioremediation of polycyclic aromatic hydrocarbons contaminated soil with Monilinia sp.: degradation and microbial community analysis. Biodegradation 19:247–257

    CAS  PubMed  Google Scholar 

  • Xia H, Chi X, Yan Z, Cheng W (2009) Enhancing plant uptake of polychlorinated biphenyls and cadmium using tea saponin. Biores Technol 100:4649–4653

    CAS  Google Scholar 

  • Zhang H, Zhao FJ, Sun B, Davison W, McGrath S (2001) A new method to measure effective soil solution concentration predicts copper availability to plants. Environ Sci Technol 35:2602–2607

    CAS  PubMed  Google Scholar 

  • Zhang K, Hua XF, Han HL, Wang J, Miao CC, Xu YY, Huang ZD, Zhang H, Yang JM, Jin WB, Liu YM, Liu Z (2008) Enhanced bioaugmentation of petroleum- and salt-contaminated soil using wheat straw. Chemosphere 73:1387–1392

    CAS  PubMed  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    PubMed  Google Scholar 

  • Zuzana S, Katarina D, Livia T (2009) Biodegradation and ecotoxicity of soil contaminated by pentachlorophenol applying bioaugmentation and addition of sorbents. Word J Microb Biotechnol 25:243–252

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Lebeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lebeau, T. (2011). Bioaugmentation for In Situ Soil Remediation: How to Ensure the Success of Such a Process. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_7

Download citation

Publish with us

Policies and ethics