Skip to main content

Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology

  • Chapter
  • First Online:
Bioaugmentation, Biostimulation and Biocontrol

Part of the book series: Soil Biology ((SOILBIOL,volume 108))

Abstract

Soils sustain an immense diversity of prokaryotic and eukaryotic organisms. Microbial functions in ecosystems are as diverse as the microbes themselves. Differences in microbial community structures reflect the abilities of microorganisms to respond to specific environmental factors and substrates. Microbes adapt to these microhabitats and live together in consortia, interacting with each other and with other parts of the soil biota. Plant growth-promoting organisms are of beneficial agricultural importance, for example, supporting plant health and growth, suppressing disease-causing microbes, and enhancing nutrient availability and assimilation. These organisms compensate for the stresses and reduction in plant growth caused by weed infestation, drought, heavy metals, salt, and other unfavorable environmental conditions. Plant–microbe interactions such as biofertilization, biocontrol, bioremediation, and phytoremediation are important for soil health, biodiversity, and plant productivity. This chapter provides an overview of applications of bioaugmentation, biostimulation, and biocontrol with plant growth-promoting organisms and organic material amendments for the improvement of soil biology and fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abhilash PC, Jamil S, Singh N (2009) Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 27:474–488

    Article  CAS  PubMed  Google Scholar 

  • Ahmad R, Jilani G, Arshad M, Zahir ZA, Khalid A (2007) Bio-conversion of organic wastes for their recycling in agriculture: an overview of perspectives and prospects. Ann Microbiol 57:471–479

    Article  Google Scholar 

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570

    Article  CAS  PubMed  Google Scholar 

  • Barnabé S, Brar SK, Tyagi RD, Beauchesne I, Surampalli RY (2009) Pre-treatment and bioconversion of wastewater sludge to value-added products: fate of endocrine disrupting compounds. Sci Total Environ 407:1471–1488

    Article  PubMed  Google Scholar 

  • Bending GD, Turner MK, Jones JE (2002) Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol Biochem 34:1073–1082

    Article  CAS  Google Scholar 

  • Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    Article  CAS  PubMed  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2008) Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biol Fertil Soils 45:115–131

    Article  Google Scholar 

  • Bolckmans K (2008) Biocontrol files. Can Bull Ecol Pest Manag 13:1–10

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol Fertil Soils 37:329–337

    Google Scholar 

  • Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15

    Article  PubMed  Google Scholar 

  • Christoserdova L (2010) Recent progress and new challenges in metagenomics for biotechnology. Biotechnol Lett 32:1351–1359

    Article  CAS  PubMed  Google Scholar 

  • Craig JW, Chang FY, Kim JH (2010) Expanding small molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse proteobacteria. Appl Environ Microbiol 76:1633–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  PubMed  Google Scholar 

  • Dahllöf I (2002) Molecular community analysis of microbial diversity. Curr Opin Biotechnol 13:213–217

    Article  PubMed  Google Scholar 

  • Deaker R, Roughley RJ, Kennedy IR (2004) Legume seed inoculation technology: a review. Soil Biol Biochem 36:1275–1288

    Article  CAS  Google Scholar 

  • El Fantroussi S, Agathos SN (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 8:268–275

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2010) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, microbiology monographs 18. Springer, Berlin

    Google Scholar 

  • Fontaine S, Mariottib A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35:837–843

    Article  CAS  Google Scholar 

  • Forney LJ, Zhou X, Brown CJ (2004) Molecular microbial ecology: land of the one-eyed king. Curr Opin Microbiol 7:210–220

    Article  CAS  PubMed  Google Scholar 

  • Gil-Sotresa F, Trasar-Cepedab C, Leirosa MC, Seoane S (2005) Different approaches to evaluating soil quality using biochemical properties. Soil Biol Biochem 37:877–887

    Article  Google Scholar 

  • Girones R (2006) Tracking viruses that contaminate environment. J Environ Eng Sci 1:19–25

    Google Scholar 

  • Guenther W (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  Google Scholar 

  • Hong SH, Ryu HW, Kim J, Cho K-S (2010) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation. doi:10.1007/s10532-010-9432-2

    Google Scholar 

  • Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    Article  CAS  PubMed  Google Scholar 

  • Hunter-Cevera JC (1998) The value of microbial diversity. Curr Opin Microbiol 1:278–285

    Article  CAS  PubMed  Google Scholar 

  • Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol Biochem 40:559–586

    Article  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Karami A, Shamsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods. Afr J Biotechnol 9:3689–3698

    CAS  Google Scholar 

  • Kavamura VN, Esposito E (2010) Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol Adv 28:61–69

    Article  CAS  PubMed  Google Scholar 

  • Kent AD, Triplett EW (2002) Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu Rev Microbiol 56:211–236

    Article  CAS  PubMed  Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    Article  CAS  PubMed  Google Scholar 

  • Kim K-R, Owens G (2010) Potential for enhanced phytoremediation of landfills using biosolids: a review. J Environ Manage 91:791–797

    Article  CAS  PubMed  Google Scholar 

  • Kuhad RC, Kothamasi DM, Tripathi KK, Singh A (2004) Diversity and functions of soil microflora in development of plants. In: Varma AK, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 71–98

    Google Scholar 

  • Levy-Booth DJ, Campbell RG, Guldenb RH, Hart MM, Powell JR, Klironomos JN, Pauls KP, SwantonCJ TJT, Dunfield KE (2007) Cycling of extracellular DNA in the soil environment. Soil Biol Biochem 39:2977–2991

    Article  CAS  Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2009) Role of the modification in root exudation induced by arbuscular mycorrhizal colonization on the intraradical growth of Phytophthora nicotianae in tomato. Mycorrhiza 19:443–448

    Article  CAS  PubMed  Google Scholar 

  • Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401

    Article  CAS  PubMed  Google Scholar 

  • Lynch JM, Moffat AJ (2005) Bioremediation: prospects for the future application of innovative applied biological research. Ann Appl Biol 146:217–221

    Article  Google Scholar 

  • Lynch JM, Benedetti A, Insam H, Nuti MP, Smalla K, Torsvik V, Nannipieri P (2004) Microbial diversity in soil: ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biol Fertil Soils 40:363–385

    Article  CAS  Google Scholar 

  • Mercier A, Kay E, Simonet P (2006) Horizonal gene transfer by natural transformation in soil environment. In: Nannipieri P, Smalla K (eds) Nucleic acids and proteins in soil. Springer, Berlin, pp 35–373

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  PubMed  Google Scholar 

  • Mulligan C (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Nowack B (2008) Chelating agents and the environment. Environ Pollut 153:1–2

    Article  CAS  PubMed  Google Scholar 

  • Ohtsubo Y, Kudo T, Tsuda M, Nagata Y (2004) Strategies for bioremediation of polychlorinated biphenyls. Appl Microbiol Biotechnol 65:250–258

    Article  CAS  PubMed  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments: a review. Appl Soil Ecol 44:101–115

    Article  Google Scholar 

  • Pannu JK, Singh A, Ward OP (2004) Vegetable oil as a contaminated soil remediation amendment: application of peanut oil for extraction of polycyclic aromatic hydrocarbons from soil. Process Biochem 39:1211–1216

    Article  CAS  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Prosser JI (2002) Molecular and functional diversity in soil microorganisms. Plant Soil 244:9–17

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Raviv M (2010) The use of mycorrhiza in organically-grown crops under semi arid conditions: a review of benefits, constraints and future challenges. Symbiosis. doi:10.1007/s13199-010-0089-8 (Online 15 September 2010)

    Google Scholar 

  • Ray RC, Ward OP, Singh A, Isobe S (2008) Commercialization of microbial biotechnology in horticulture: summary, outlook of achievements, constraints and prospects. In: Ray RC, Ward OP (eds) Microbial biotechnology in horticulture, vol 3. Science, New Hampshire, pp 341–365

    Google Scholar 

  • Ronchel MC, Ramos JL (2001) Dual system to reinforce biological containment of recombinant bacteria designed for rhizoremediation. Appl Environ Microbiol 67:2649–2656

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    Article  CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran AS, Poonam P (2008) Remediation techniques for contaminated soils. Environ Eng Manag J 7:379–387

    CAS  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sidhu JPS, Toze SG (2009) Human pathogens and their indicators in biosolids: a literature review. Environ Int 35:187–201

    Article  PubMed  Google Scholar 

  • Singh A, Ward OP (2005) Relevance of microbial diversity to environmental biotechnology. In: Satyanarayana T, Johri BN (eds) Microbial diversity: current perspectives and potential applications. I.K. International, New Delhi, pp 521–536

    Google Scholar 

  • Singh A, Ward OP (2009) Molecular methods for monitoring environmental contaminants and bioremediation. In: Varma AK, Verma N (eds) Text book on molecular biotechnology. I.K. International, New Delhi, pp 1265–1274

    Google Scholar 

  • Singh A, Kuhad RC, Shareefdeen Z, Ward OP (2004) Methods for monitoring and assessment of bioremediation processes. In: Singh A, Ward OP (eds) Biodegradation and bioremediation, vol 2, Soil biology series. Springer, Germany, pp 279–304

    Chapter  Google Scholar 

  • Singh A, Billingsley K, Ward OP (2006) Composting: a potentially safe process for disposal of genetically modified organisms. Crit Rev Biotechnol 26:1–16

    Article  PubMed  Google Scholar 

  • Singh A, Kuhad RC, Ward OP (2009) Biological remediation of soils: an overview of global market and available technologies. In: Singh A, Kuhad RC, Ward OP (eds) Advances in applied bioremediation, vol 17, Soil biology series. Springer, Berlin, pp 1–19

    Chapter  Google Scholar 

  • Soto MJ, Domínguez-Ferreras A, Pérez-Mendoza D, Sanjuán J, Olivares J (2009) Mutualism versus pathogenesis: the give-and-take in plant-bacteria interactions. Cell Microbiol 11:381–388

    Article  CAS  PubMed  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549

    Article  PubMed Central  PubMed  Google Scholar 

  • Wallenstein MD, Weintraub MN (2008) Emerging tools for measuring and modeling the in situ activity of soil extracellular enzymes. Soil Biol Biochem 40:2098–2106

    Article  CAS  Google Scholar 

  • Wang Y, Dai C-C (2010) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol. doi:10.1007/s13213-010-0120-6 (Online 26 August 2010)

    Google Scholar 

  • Ward OP, Singh A, Van Hamme JD (2003) Accelerated biodegradation of petroleum waste. J Ind Microbiol Biotechnol 30:260–270

    Article  CAS  PubMed  Google Scholar 

  • Ward OP, Singh A, Van Hamme JD, Voordouw G (2009) Petroleum microbiology. In: Schaechter M (ed) Encyclopedia of Microbiology. 3rd Edn, Elsevier, Amsterdam, pp 443–456

    Chapter  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009) Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang J (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yap CL, Gana S, Ng HK (2010) Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. J Hazard Mater 177:28–41

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Chen J, Shim H, Bai Z (2007) New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int 33:406–413

    Article  PubMed  Google Scholar 

  • Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2010) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytorem 211:200–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Singh, A., Parmar, N., Kuhad, R.C., Ward, O.P. (2011). Bioaugmentation, Biostimulation, and Biocontrol in Soil Biology. In: Singh, A., Parmar, N., Kuhad, R. (eds) Bioaugmentation, Biostimulation and Biocontrol. Soil Biology, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19769-7_1

Download citation

Publish with us

Policies and ethics