Skip to main content

Hamilton–Jacobi Method and Gravitation

  • Conference paper
  • First Online:
Cosmology, Quantum Vacuum and Zeta Functions

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 137))

  • 887 Accesses

Abstract

Studying the behaviour of a quantum field in a classical, curved, spacetime is an extraordinary task which nobody is able to take on at present time. Independently by the fact that such problem is not likely to be solved soon, still we possess the instruments to perform exact predictions in special, highly symmetric, conditions. Aim of the present contribution is to show how it is possible to extract quantitative information about a variety of physical phenomena in very general situations by virtue of the so-called Hamilton–Jacobi method. In particular, we shall prove the agreement of such semi-classical method with exact results of quantum field theoretic calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.K. Parikh and F. Wilczek, Phys. Rev. Lett. 85 (2000) 5042.

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Angheben, M. Nadalini, L. Vanzo and S. Zerbini, JHEP 05 (2005) 014.

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Nadalini, L. Vanzo and S. Zerbini, J. Physics A 39 (2006) 6601.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. Kerner and R.B. Mann, Phys. Rev. D 73 (2006) 104010.

    Article  MathSciNet  ADS  Google Scholar 

  5. R. Di Criscienzo, M. Nadalini, L. Vanzo, S. Zerbini and G. Zoccatelli, Phys. Lett. B 657 (2007) 107.

    Article  MathSciNet  ADS  Google Scholar 

  6. S. A. Hayward, R. Di Criscienzo, L. Vanzo, M. Nadalini and S. Zerbini, Class. Quant. Grav. 26 (2009) 062001.

    Article  ADS  Google Scholar 

  7. S. A. Hayward, Class. Quant. Grav. 15 (1998) 3147.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. H. Kodama, Prog. Theor. Phys. 63 (1980) 1217.

    Article  ADS  Google Scholar 

  9. R. Di Criscienzo, S.A. Hayward, M. Nadalini, L. Vanzo and S. Zerbini, Class. Quant. Grav. 27 (2010) 015006.

    Article  ADS  Google Scholar 

  10. R. Di Criscienzo, L. Vanzo and S. Zerbini, JHEP 05 (2010) 092.

    Article  Google Scholar 

  11. S. A. Hayward, Phys. Rev. D 49 (1994) 6467.

    Article  MathSciNet  ADS  Google Scholar 

  12. G. E. Volovik, JETH Lett. 90, 1 (2009).

    Article  ADS  Google Scholar 

  13. J. Bros, H. Epstein and U. Moschella, JCAP 0802 (2008) 003; J. Bros, H. Epstein and U. Moschella, arXiv:0812.3513; J. Bros, H. Epstein, M. Gaudin, U. Moschella and V. Pasquier, Commun. Math. Phys. 295 (2010) 261.

    Google Scholar 

  14. V. P. Frolov and I. D. Novikov, Black Hole Physics (Kluwer Academic Publishers, Dordrecht, 1998).

    Google Scholar 

  15. H. Iguchi and T. Harada, Class. Quant. Grav. 18 (2001) 3681; T. Harada et al., Phys. Rev. D 64 (2001) 041501.

    Google Scholar 

  16. C. Vaz and L. Witten, Phys. Lett. B 325 (1994) 27.

    Article  MathSciNet  ADS  Google Scholar 

  17. L.H. Ford and L. Parker, Phys. Rev. D 17 (1978) 1485.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Di Criscienzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Criscienzo, R.D., Vanzo, L., Zerbini, S. (2011). Hamilton–Jacobi Method and Gravitation. In: Odintsov, S., Sáez-Gómez, D., Xambó-Descamps, S. (eds) Cosmology, Quantum Vacuum and Zeta Functions. Springer Proceedings in Physics, vol 137. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19760-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-19760-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-19759-8

  • Online ISBN: 978-3-642-19760-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics