Skip to main content

Non Coding RNAs and Gene Silencing in Grape

  • Chapter
  • First Online:
Non Coding RNAs in Plants

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Grapevine (Vitis vinifera L.) is a worldwide fruit crop of primary economic interest for berry consumption and winemaking. The molecular basis of grape berry ripening has been partially elucidated with the isolation and functional characterization of transcription factors which regulate sugar accumulation and secondary metabolism. After the recent publication of the complete sequence draft of two grapevine genotypes, a set of small non coding RNAs has been isolated by Sanger and high-throughput sequencing of small RNA libraries. These include conserved and grapevine-specific microRNAs as well as other small RNAs potentially involved in berry ripening. Small non coding RNAs are effectors of silencing pathways that underlie transgene silencing phenomena observed in several experiments of Agrobacterium-mediated transformation of grapevine. The knowledge of the silencing mechanisms in grapevine promises to facilitate the development of transient systems for gene functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alleweldt G, Duering H, Waits G (1975) Untersuchungen zum mechanismus der zuckereinlagerung in die wachsenden weinbeeren. Angew Bot 49:65–73

    CAS  Google Scholar 

  • Barakat A, Wall K, Leebens-Mack J et al (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51:991–1003

    Article  PubMed  CAS  Google Scholar 

  • Bogs J, Jaffe F, Takos A et al (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol 143:1347–1361

    Article  PubMed  CAS  Google Scholar 

  • Brumin M, Stukalov S, Haviv S et al (2009) Post-transcriptional gene silencing and virus resistance in Nicotiana benthamiana expressing a Grapevine virus A minireplicon. Transgenic Res 18:331–345

    Article  PubMed  CAS  Google Scholar 

  • Carra A, Mica E, Gambino G et al (2009) Cloning and characterization of small noncoding RNAs from grape. Plant J 59:750–763

    Article  PubMed  CAS  Google Scholar 

  • Davies C, Boss PK, Robinson SP (1997) Treatment of grape berries, a nonclimacteric fruit with a synthetic auxin, retards ripening and alters the expression of developmentally regulated genes. Plant Physiol 115:1155–1161

    PubMed  CAS  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD et al (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429

    Article  PubMed  Google Scholar 

  • Deluc L, Bogs J, Walker AR et al (2008) The transcription factor VvMYB5 contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries. Plant Physiol 147:2041–2053

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD et al (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219

    Article  PubMed  Google Scholar 

  • Fukuoka S, Saka N, Koga H et al (2009) Loss of function of a proline containing protein confers durable disease resistance in rice. Science 325:998–1001

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Gribaudo I, Leopold S et al (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Chitarra W, Maghuly F et al (2009) Characterization of T-DNA insertions in transgenic grapevines obtained by Agrobacterium-mediated transformation. Mol Breed 24:305–320

    Article  CAS  Google Scholar 

  • Gambino G, Perrone I, Carra A et al (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol Mol Biol Rev 67:16–37

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fei JF et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signal for Arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  PubMed  CAS  Google Scholar 

  • Haviv S, Galiakparov N, Goszczynski DE et al (2006) Engineering the genome of Grapevine virus A into a vector for expression of proteins in herbaceous plants. J Virol Meth 132:227–231

    Article  CAS  Google Scholar 

  • Howell MD, Fahlgren N, Chapman EJ et al (2007) Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA and tasiRNA-directed targeting. Plant Cell 19:926–942

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury JM, Noel B et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468

    Article  PubMed  CAS  Google Scholar 

  • Jardak-Jamoussi R, Winterhagen P, Bouamama B et al (2009) Development and evaluation of a GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tiss Organ Cult 97:187–196

    Article  CAS  Google Scholar 

  • Jeong ST, Goto-Yamamoto N, Kobayashi S et al (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252

    Article  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  • Jullien PE, Berger F (2010) DNA methylation reprogramming during plant sexual reproduction? Trends Genet 26:394–399

    Article  PubMed  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A et al (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  PubMed  CAS  Google Scholar 

  • Kikkert JR, Vidal JR, Reisch BI (2004) Stable plant transformation via particle bombardment/biolistics. In: Peña L (ed) Methods in molecular biology. Transgenic plants: methods and protocols, vol 286. Humana Press, Totowa, pp 61–67

    Google Scholar 

  • Kobayashi S, Ishimaru M, Hiraoka K et al (2002) Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Planta 215:924–933

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi S, Goto-Yamamoto N, Hirochika H (2004) Retrotransposon-induced mutations in grape skin color. Science 304:982

    Article  PubMed  Google Scholar 

  • Li WX, Oono Y, Zhu J et al (2008) The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell 20:2238–2251

    Article  PubMed  CAS  Google Scholar 

  • Lindbo JA, Dougherty WG (2005) Plant pathology and RNAi: a brief history. Annu Rev Phytopathol 43:191–204

    Article  PubMed  CAS  Google Scholar 

  • Liu H-H, Tian X, Li Y-J et al (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R et al (2005) Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Amerson H et al (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098

    Article  PubMed  CAS  Google Scholar 

  • Maghuly F, Leopold S, Da Câmara MA et al (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Dugas DV, Bartel DP et al (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  PubMed  CAS  Google Scholar 

  • Mauro MC, Toutain S, Walter B et al (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    Article  CAS  Google Scholar 

  • Meyers BC, Axtell MJ, Bartel B et al (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  Google Scholar 

  • Mica E, Piccolo V, Delledonne M et al (2010) High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics 11:109

    Article  PubMed  Google Scholar 

  • Missiou A, Kalantidis K, Boutla A et al (2004) Generation of transgenic potato plants highly resistant to Potato virus Y (PVY) through RNA silencing. Mol Breed 14:185–197

    Article  CAS  Google Scholar 

  • Moffett P, Farnham G, Peart J et al (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519

    Article  PubMed  CAS  Google Scholar 

  • Morin RD, Aksay G, Dolgosheina E et al (2008) Comparative analysis of the small RNA transcriptomes of Pinus contorta and Oryza sativa. Genome Res 18:571–584

    Article  PubMed  CAS  Google Scholar 

  • Muruganantham M, Moskovitz Y, Haviv S et al (2009) Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Meth 155:167–174

    Article  CAS  Google Scholar 

  • Ooms G, Bakker A, Molendijk L et al (1982) T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissues of Nicotiana tabacum. Cell 30:589–597

    Article  PubMed  CAS  Google Scholar 

  • Pantaleo V, Szittya G, Moxon S et al (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–976

    PubMed  CAS  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance: deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Article  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D et al (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu J-K (2004) Novel and stress-regulated micro RNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Symons GM, Davies C, Shavrukov Y et al (2006) Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol 140:150–158

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Silhavy D, Molnár A et al (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO J 22:633–640

    Article  PubMed  CAS  Google Scholar 

  • Tesniere C, Torregrosa L, Pradal M et al (2006) Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. J Exp Bot 57:91–99

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326

    Article  PubMed  Google Scholar 

  • Vidal J, Kikkert JR, Donzelli B et al (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814

    Article  PubMed  CAS  Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines expressing the coat protein gene of Grapevine fan leaf virus. Transgenic Res 13:165–179

    Article  PubMed  CAS  Google Scholar 

  • Winterhagen P, Dubois C, Sinn M et al (2009) Gene silencing and virus resistance based on defective interfering constructs in transgenic Nicotiana benthamiana is not linked to accumulation of siRNA. Plant Physiol Biochem 47:739–742

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Gen Genet 238:17–25

    PubMed  CAS  Google Scholar 

  • Zhou ZS, Dell’Orco M, Saldarelli P et al (2006) Identification of an RNA-silencing suppressor in the genome of Grapevine virus A. J Gen Virol 87:2387–2395

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A et al (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Giampiero Valè (CRA-GPG Genomic Research Centre, Fiorenzuola d’Arda, Italy) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Carra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carra, A., Gambino, G., Urso, S., Nervo, G. (2011). Non Coding RNAs and Gene Silencing in Grape. In: Erdmann, V., Barciszewski, J. (eds) Non Coding RNAs in Plants. RNA Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19454-2_5

Download citation

Publish with us

Policies and ethics