Skip to main content

Efficacies of Medicinal Plant Extracts Against Blood-Sucking Parasites

  • Chapter
  • First Online:

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 1))

Abstract

Mosquito-borne diseases are endemic in more than over 100 countries, causing mortality of nearly two million people every year, and at least one million children die of such diseases each year, leaving as many as 2,100 million people at risk around the world. Mosquitoes are associated with the transmission of malaria, dengue, Japanese encephalitis, filariasis and other viral diseases throughout the globe, apart from being a nuisance insect. Vector control, using agents of chemical origin, continues to be practiced in the control of vector-borne diseases. However, due to some drawbacks including lack of selectivity, environmental contamination, and emergence and spread of vector resistance, development of natural products of plant origin with insecticidal properties have been encouraged in recent years for control of a variety of pest insects and vectors. The work herein is based on activities to determine the efficacies of hexane, chloroform, ethyl acetate, acetone and methanol extracts of medicinal plants tested against blood-sucking parasites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adewunmi CO, Ariwodola JO, Olubunmi PA (1987) Systemic effects of water extract of Tetrapleura tetraptera, a Nigerian plant molluscicide used in Schistosomiasis control. Pharmac Biol 8:7It1;ndash;14

    Google Scholar 

  • Adolf W, Opferkuch HJ, Hecker E (1984) Irritant phorbol derivatives from 4 Jatropha species. Phytochemistry 23:129It1;ndash;132

    CAS  Google Scholar 

  • Agarwal M, Walia S, Dhingra S, Khambay BP (2001) Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinale Roscoe (ginger) rhizomes. Pest Manag Sci 57:289It1;ndash;300

    PubMed  CAS  Google Scholar 

  • Aguilar HH, de Gives PM, Sánchez DO, Arellano ME, Hernández EL, Aroche UL, Valladares-Cisneros G (2008) In vitro nematocidal activity of plant extracts of Mexican flora against Haemonchus contortus fourth larval stage. Ann NY Acad Sci 1149:158It1;ndash;160

    PubMed  Google Scholar 

  • Ahmed M, Amin S, Islam M, Takahashi M, Okuyama E, Hossain CF (2000) Analgesic principle from Abutilon indicum. Pharmazie 55:314

    PubMed  CAS  Google Scholar 

  • Aiyela-agbe OO, Adesogan EK, Ekunday O, Adeniyi BA (2000) The antimicrobial activity of roots of Jateopha podagrica Hook. Phytother Res 14:60It1;ndash;62

    CAS  Google Scholar 

  • Akinjogunla OJ, Eghafona NO, Enabulele IO, Mboto CI, Ogbemudia FO (2010) Antibacterial activity of ethanolic extracts of Phyllanthus amarus against extended spectrum It1;beta;- lactamase producing Escherichia coli isolated from stool samples of HIV sero-positive patients with or without diarrhea. Afr J Pharm Pharmacol 4(6):402It1;ndash;407

    Google Scholar 

  • Amin MR, Mostofa M, Hoque ME, Sayed MA (2009) In vitro anthelmintic efficacy of some indigenous medicinal plants against gastrointestinal nematodes of cattle. J Bangladesh Agric Univ 7(1):57It1;ndash;61

    Google Scholar 

  • Anonyme (1993) Fiche espèce sur Mangifera indica L. Revue de Médecines et Pharmacopées Africaines 6(2):119It1;ndash;124

    Google Scholar 

  • Anonymous (1952) The wealth of India. Council of Scientific and Industrial Research, New Delhi, India, pp 35It1;ndash;36

    Google Scholar 

  • Anonymous (1970) Hamdard pharmacopoeia of eastern medicine, 2nd Impression. Hamdard National Foundation, Pakistan, p 373

    Google Scholar 

  • Anonymous (1985) The wealth of India: a dictionary of Indian raw material and industrial products, vol 1, Revised Edition. CSIR, New Delhi, pp 37It1;ndash;47

    Google Scholar 

  • Aouinty B, Outara S, Mellouki F, Mahari S (2006) It1;Eacute;valuation préliminaire de activité larvicide des extraits aqueux des feuilles du ricin (Ricinus communis L.) et du bois de thuya (Tetraclinis articulata (Vahl) Mast.) sur les larves de quatre moustiques culicidés: Culex pipiens (Linné), Aedes caspius (Pallas), Culiseta longiareolata (Aitken) et Anopheles maculipennis (Meigen). Biotechnol Agron Soc Environ 10(2):67It1;ndash;71

    Google Scholar 

  • Areekul S, Sinchaisri P, Tigvatananon S (1987) Effect of Thai plant extracts on the oriental fruit fly. I.Toxicity test. Kasetsart J 21:395It1;ndash;470

    Google Scholar 

  • Arthan D, Svasti J, Kittakoop P, Pittayakhachonwut D, Tanticharoen M, Thebtaranonth Y (2002) Antiviral isoflavonoid sulfate and steroidal glycosides from the fruits of Solanum torvum. Phytochemistry 59:459It1;ndash;463

    PubMed  CAS  Google Scholar 

  • Awe SO, Olajide OA, Oladiran OO (1988) Antiplasmodial and antipyretic screening of Mangifera indica extract. Phytother Res 12:437It1;ndash;438

    Google Scholar 

  • Ayoub SMH, Yankov LK (1981) On the constituents of the peel of Citrullus colcynthis. Part-2. Fitoterpia 52(1):13It1;ndash;16

    CAS  Google Scholar 

  • Badaturuge MJ, Habtemariam S, Thomas MJK (2011) Antioxidant compounds from a South Asian beverage and medicinal plant, Cassia auriculata. Food Chem 125:221It1;ndash;225

    Google Scholar 

  • Bagalwa M, Chifundera K (2007) Environmental impact evaluation of the stem bark extract of Maesa lanceolata used in Democratic Republic of Congo. J Ethnopharmacol 114:281It1;ndash;284

    PubMed  CAS  Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103:223It1;ndash;229

    PubMed  CAS  Google Scholar 

  • Bagavan A, Kamaraj C, Elango G, Zahir AA, Rahuman AA (2009) Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes. Vet Parasitol 166:286It1;ndash;292

    PubMed  CAS  Google Scholar 

  • Banerji J, Das B (1993) MAPA, vol 15. Department of Chemistry, University College of Science, Calcutta, India, pp 1002It1;ndash;1017

    Google Scholar 

  • EXIM Bank (2003) Export potential of Indian medicinal plants and products. Publication No. OP 98. Export and Import Bank of India (EXIM Bank), Mumbai, India (see also http://www.eximbankindia.com/publications. Accessed 9 Oct 2005)

  • Bari MA, Islam W, Khan AR, Mandal A (2010) Antibacterial and antifungal activity of Solanum torvum (Solanaceae). Int J Agric Biol 12(3):386It1;ndash;390

    Google Scholar 

  • Basalah MO, Ali Whaibi MH, Sher M (1985) Comparative study of some metabolities of Citrullus colocynthis Schrad and Cucumis prophetarum L. J Biol Sci Res 16(1):105It1;ndash;123

    CAS  Google Scholar 

  • Bouquet A, Debray M (1974) Plantes médicinales de la CIt1;ocirc;te dIt1;rsquo;Ivoire. Mémoire ORSTOM, Paris

    Google Scholar 

  • Bowman WC, Rand MJ (1980) Textbook of pharmacology. Blackwell Scientific, Oxford, pp 42.29It1;ndash;42.31

    Google Scholar 

  • Broussalis AM, Ferraro GE, Martino VS, Pinzón R, Coussio JD, Alvarez JC (1999) Argentine plants as potential source of insecticidal compounds. J Ethnopharmacol 67:219It1;ndash;223

    PubMed  CAS  Google Scholar 

  • ICMR Bulletin (2002) Prospects of elimination of lymphatic filariasis in India. ICMR Bull 32(5It1;ndash;6)

    Google Scholar 

  • Burkill HM (1985) The useful plants of West Tropical Africa, families AIt1;ndash;D. Royal Botanic Gardens, Kew, 1

    Google Scholar 

  • Caffarini P, Carrizo P, Pelicano A, Rogggero P, Pacheco J (2008) Effects of acetonic and water extracts of Ricinus communis, Melia azedarach and Trichillia glauca on black common cutting ant (Acromyrmex lundi). IDESIA 26(1):59It1;ndash;64

    Google Scholar 

  • Capasso F, Mascolo N, Izzo AA, Gaginella TS (1994) Dissociation of castor oil induced diarrhea and intestinal mucosal injury in rat: effect of NG-nitro-L- arginine methyl ester. Br J Pharmacol 113:1127It1;ndash;1130

    PubMed  CAS  Google Scholar 

  • Chadha KL, Gupta R (1995) Medicinal and aromatic plants. In: Advances in horticulture, vol 11. Malhotra Publishing House, New Delhi, 932 p

    Google Scholar 

  • Chah KF, Muko KN, Oboegbulem SI (2000) Antimicrobial activity of methanolic extract of Solanum torvum fruit. Fitoterapia 71:187It1;ndash;189

    PubMed  CAS  Google Scholar 

  • Chakraborty T, Babu SPS, Sukul NC, Babu SPS (1996) Preliminary evidence of antifilarial effect of Centella asiatica on Canine dirofilariasis. Fitoterapia 67(2):110It1;ndash;112

    Google Scholar 

  • Chakraborty A, Brantner A, Mukainaka T, Nobukuni Y, Kuchide M, Konoshima T, Tokuda H, Nishino H (2002) Cancer chemopreventive activity of Achyranthes aspera leaves on EpsteinIt1;ndash;Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett 177:1It1;ndash;5

    PubMed  CAS  Google Scholar 

  • Chandrashekhar CH, Latha KP, Vagdevi HM, Vaidya VP (2008) Anthelmintic activity of the crude extracts of Ficus racemosa. Int J Green Pharmacy 2(2):100It1;ndash;103

    Google Scholar 

  • Chatterjee A, Das B, Adityachaudhary N, Dabkirtaniya S (1980) Note on the insecticidal properties of the seeds of Jatropha gossypifolia Linn. Indian J Agric Sci 50:637It1;ndash;638

    Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medical plants. CSIR, New Delhi

    Google Scholar 

  • Chopra RN, Chopra IC, Handa KL, Kapur LD (1958) Indigenous drugs of India, 2nd edn. Academic, Calcutta, pp 508It1;ndash;674

    Google Scholar 

  • Chopra RN, Nayar SL, Chopra IC (1992) Glossary of Indian medicinal plants, vol 2. Council for Scientific and Industrial Research, New Delhi, p 12

    Google Scholar 

  • Coe FG, Anderson GJ (1996) Screening of medical plants used by Garifuna of Eastern Nicaragua for bioactive compounds. J Ethnopharmacol 53:29It1;ndash;50

    PubMed  CAS  Google Scholar 

  • Daniel T, Umarani S, Sakthivadivel M (1995) Insecticidal action of Ervatamia divaricata L. and Acalypha indica L. against Culex quinquefasciatus Say. Geobios New Rep 14(2):95It1;ndash;98

    Google Scholar 

  • Das PC, Das A, Mandal S (1989a) Anti-inflammatory and antimicrobial activities of the seed kernel of Mangifera indica extract. Phytother Res 60:235It1;ndash;240

    Google Scholar 

  • Das PC, Das A, Mandal S, Islam CN, Dutta MK, Patra B (1989b) Antiinflammatory and antimicrobial activities of the seed kernel Mangifera indica. Fitoterapia 6(3):235It1;ndash;241

    Google Scholar 

  • Das B, Rao SP, Srinivas K, Das R (1996) Jatrodien, a lignan from stems of Jatropha gossypifolia. Phytochemistry 41:985It1;ndash;987

    CAS  Google Scholar 

  • Dash AP, Valecha N, Anvikar AR, Kumar A (2008) Malaria in India: challenges and opportunities. J Biosci 33:583It1;ndash;592

    PubMed  CAS  Google Scholar 

  • de Padua LS, Bunyapraphatsara N, Lemmens RHMJ (1999) Medicinal and poisonous plants, plant resources of South East Asia. Backhuys, Leiden

    Google Scholar 

  • Derouich M, Boutayeb A (2006) Dengue fever: mathematical modelling and computer simulation. Appl Math Comput 177:528It1;ndash;544

    Google Scholar 

  • DGCIS (2004) Monthly statistics of foreign trade of India. Annual report for 2003 It1;ndash; 2004(Vol. 1). Exports including re-exports. Directorate General of Commercial Intelligence and Statistics, Ministry of Commerce, Kolkata

    Google Scholar 

  • Dhar ML, Dhar MM, Dhawan BN, Mehrotra BN, Ray C (1968) Screening of Indian plants for biological activity. Part I. Indian J Exp Biol 6:232It1;ndash;247

    PubMed  CAS  Google Scholar 

  • Dharmasiri MG, Jayakody JR, Galhena G, Liyanage SS, Ratnasooriya WD (2003) Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J Ethnopharmacol 87(2It1;ndash;3):199It1;ndash;206

    PubMed  CAS  Google Scholar 

  • Duraipandiyan V, Ayyanar M, Ignacimuthu S (2006) Antimicrobial activity of some ethnomedicinal plants used by Paliyar tribe from Tamil Nadu, India. BMC Comp Alt Med 6:35It1;ndash;42

    Google Scholar 

  • Dutta SC (1973) Medicinal plants. National Council for Education Research and Training, New Delhi

    Google Scholar 

  • Elango G, Rahuman AA (2010) Evaluation of medicinal plant extracts against ticks and fluke. Parasitol Res. doi:10.1007/s00436-010-2090-9

    Google Scholar 

  • Elango G, Bagavan A, Kamaraj C, Zahir AA, Rahuman AA (2009a) Oviposition-deterrent, ovicidal, and repellent activities of indigenous plant extracts against Anopheles subpictus Grassi (Diptera: Culicidae). Parasitol Res 105(6):1567It1;ndash;1576

    PubMed  CAS  Google Scholar 

  • Elango G, Rahuman AA, Bagavan A, Kamaraj C, Zahir AA, Venkatesan C (2009b) Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus. Parasitol Res 104(6):1381It1;ndash;1388

    PubMed  CAS  Google Scholar 

  • el-Naggar ME, Abdel-Sattar MM, Mosallam SS (1989) Toxicity of colocynithin and hydrated colocynithin from alcoholic extract of Citrullus colocynthis pulp. J Egypt Soc Parasitol 19(1):179It1;ndash;185

    PubMed  CAS  Google Scholar 

  • Fagbenro-Beyioku AF, Oyibo WA, Anuforom BC (1998) Disinfectant/ antiparasitic activities of Jatropha curcas. East Afr Med J 75:508It1;ndash;511

    PubMed  CAS  Google Scholar 

  • Faizi S, Naz A (2004) Palmitoleate (9Z-Hexadeca-9-enoate) esters of oleanane triterpenoids from the golden flowers of Tagetes erecta: isolation and autoxidation products. Helv Chim Acta 87:46It1;ndash;56

    CAS  Google Scholar 

  • Farnsworth NR, Soejarto DD (1991) Global importance of medicinal plants. In: Akerele O, Heywood V, Synge H (eds) The conservation of medicinal plants. Cambridge University Press, Cambridge, pp 25It1;ndash;51

    Google Scholar 

  • Food and Agricultural Organization (FAO) (1996) Forests, food and health. http://www.fao.org/forestry/site/28813/em. Accessed Oct 10 2005

  • Ganapathy S, Dash GK (2002) Diuretic and laxative activity of Cocculus hirsuts. Fitotherapia 73(1):28It1;ndash;31

    Google Scholar 

  • Gangadevi V, Yogeswari S, Kamalraj S, Rani G, Muthumary J (2008) The antibacterial activity of Acalypha indica L. Indian J Sci Technol 1(6):1It1;ndash;5

    Google Scholar 

  • García D, Escalante M, Delgado R, Ubeira FM, Leiro J (2003) Anthelminthic and antiallergic activities of Mangifera indica L. stem bark components Vimang and mangiferin. Phytother Res 17(10):1203It1;ndash;8

    Google Scholar 

  • Garrido G, González D, Delporte C (2001) Analgesic and anti-inflammatory effects of Mangifera indica L. extract (Vimang). Phytother Res 15:18It1;ndash;21

    PubMed  CAS  Google Scholar 

  • Gazi MI (1991) The finding of antiplaque features in Acacia Arabica type of chewing gum. J Clin Periodontol 18(1):75It1;ndash;77

    PubMed  CAS  Google Scholar 

  • Geethangili M, Rao YK, Fang SH, Tzeng YM (2008) Cytotoxic constituents from Andrographis paniculata induces cell cycle arrest in jurkat cells. Phytother Res 22:1336It1;ndash;1341

    PubMed  CAS  Google Scholar 

  • Georges K, Jayaprakasam B, Dalavoy SS, Nair MG (2008) Pestmanaging activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso. Bioresour Technol 99(6):2037It1;ndash;2045

    PubMed  CAS  Google Scholar 

  • Ghani A (1998) Medicinal plants of Bangladesh. Chemical constituents and uses, 2nd edn. Asiatic Society of Bangladesh, Dhaka, pp 301It1;ndash;302

    Google Scholar 

  • Ghani A (1998b) Medicinal plants of Bangladesh: chemical constituents and uses. Asiatic Society of Bangladesh, Dhaka, Bangladesh

    Google Scholar 

  • Ghosal S, Jaiswal DK, Biswas K (1978) New glycoxanthones and flavanone glycosides of Hoppea dichotoma. Phytochemistry 17:2119It1;ndash;2123

    CAS  Google Scholar 

  • Gibbons RV, Vaughn DW (2002) Dengue: an escalating problem. BMJ 324:1563It1;ndash;1566

    PubMed  Google Scholar 

  • Goonasekara MM, Gunawardhana VK, Jayaseana K, Mohammed SG, Balasubramaniam S (1995) Pregnancy terminating effect of Jatropha curcas in rats. J Ethnopharmacol 47:117It1;ndash;123

    Google Scholar 

  • Gotoh A, Sakaeda T, Kimura T, Shirakawa T, Wada Y, Wada A, Kimachi T, Takemoto Y, Iida A, Iwakawa S, Hirai M, Tomita H, Okamura N, Nakamura T, Okumura K (2004) Antiproliferative activity of Rhinacanthus nasutus (L.) Kurz extracts and the active moiety, rhinacanthin C. Biol Pharm Bull 27:1070It1;ndash;1074

    PubMed  CAS  Google Scholar 

  • Goudgaon NM, Basavaraj NR, Vijayalaxmi A (2003) Antiinflammatory activity of different fractions of Leucas aspera Spreng. Indian J Pharmacol 35:397It1;ndash;398

    Google Scholar 

  • Govindarajan VS (1982a) Ginger It1;ndash; chemistry, technology, and quality evaluation: part 1. Crit Rev Food Sci Nutr 17:1It1;ndash;96

    PubMed  CAS  Google Scholar 

  • Govindarajan VS (1982b) Ginger It1;ndash; chemistry, technology, and quality evaluation: part 2. Crit Rev Food Sci Nutr 17:189It1;ndash;258

    PubMed  CAS  Google Scholar 

  • Grainge M, Ahmed S, Mitchell WC, Hylin JW (1984) Plant species reportedly possessing pest-control properties: a database. Resource Systems Institute, East-West Center, Honolulu, HI, USA, p 240

    Google Scholar 

  • Grant KL, Lutz RB (2000) Ginger. Am J Health Syst Pharm 57:945It1;ndash;947

    PubMed  CAS  Google Scholar 

  • Guha S, Ghosal S, Chattopadhyay U (1996) Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally glucosylxanthone. Chemotherapy 42:443It1;ndash;451

    PubMed  CAS  Google Scholar 

  • Guha-Sapir D, Schimmer B (2005) Dengue fever: new paradigms for a changing epidemiology. Emerg Themes Epidemiol 2(1):1

    PubMed  Google Scholar 

  • Habs M, Jahn SAA, Schmaehl D (1984) Carcinogenic activity of condensate from colquint seeds (Citrullus colcynthis) after chronic eipcutaneous administration to mice. J Cancer Res Clin Oncol 108(1):154It1;ndash;156

    PubMed  CAS  Google Scholar 

  • Hales S, Wet ND, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360:830It1;ndash;834

    PubMed  Google Scholar 

  • Hansson A, Veliz G, Naquira C, Amren M, Arroyo M, Arevalo G (1986) Preclinical and clinical studies with latex from Ficus glabrata HBK, a traditional intestinal antihelminthic in the Amazonian area. J Ethnopharmacol 2:105It1;ndash;138

    Google Scholar 

  • Hartwell JL (1969) Plants used against cancer, a survey. Lloydia 32:153It1;ndash;205

    PubMed  CAS  Google Scholar 

  • Heller J (1996) Promoting the conservation and use of under utilized and neglected crops. 1. Physic nut: Jatropha curcas L. International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Horsten SFAJ, Van den Berg AJJ, Kettenes-van den Bosch JJ, Leeflang BR, Labadie RP (1996) Cyclogossine A: a novel cyclic heptapeptide isolated from the latex of Jatropha gossypifolia. Planta Med 62:46It1;ndash;50

    PubMed  CAS  Google Scholar 

  • Hsu JH, Liou SS, Yu BC, Cheng JT, Wu YC (2004) Activation of _1Aadrenoceptor by andrographolide to increase glucose uptake in cultured myoblast C2C12 cells. Planta Med 70:1230It1;ndash;1233

    PubMed  CAS  Google Scholar 

  • Husain A, Virmani OP, Popli SP, Misra LN, Gupta MM, Srivastava GN, Abraham Z, Singh AK (1992) Dictionary of Indian medicinal plants. CIMAP, Lucknow, p 546

    Google Scholar 

  • Igbinosa OO, Igbinosa EO, Aiyegoro OA (2009) Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Afr J Pharm Pharmacol 3(2):058It1;ndash;062

    Google Scholar 

  • Iqbal Z, Lateef M, Jabbar A, Ghayur MN, Gilani AH (2006) In vitro and In vivo anthelmintic activity of Nicotiana tabacum L. leaves against gastrointestinal nematodes of sheep. Phytother Res 20:46It1;ndash;48

    PubMed  Google Scholar 

  • Irvine FR (1961) Woody plants of Ghana (with special reference to their uses), 2nd edn. OUP, London, pp 233It1;ndash;237

    Google Scholar 

  • Ivan A (1998) Chemical constituents, traditional and modern uses. In: Medicine plants of the world. Ross Humana, Totowa, NJ, pp 375It1;ndash;395

    Google Scholar 

  • Iwu MM (1993) Handbook of African medicinal plants. CRC, Boca Raton, FL, pp 24It1;ndash;33

    Google Scholar 

  • Jagannadha Rao KV, Ramachandra RL (1961) Chemical examination of Cocculus hirsutus (Linn) Diels. J Sci Ind Res 20(B):125It1;ndash;126

    Google Scholar 

  • Jayashree G, Kurup M, Sudarslal S, Jacob VB (2003) Anti-oxidant activity of Centella asiatica on lymphoma-bearing mice. Fitoterapia 74:431It1;ndash;434

    PubMed  CAS  Google Scholar 

  • Johri RK, Pahwa GS, Sharma SC, Zutshi U (1991) Determination of estrogenic/antiestrogenic potential of antifertility substances using rat uterine peroxidase assay. Contraception 44(5):549It1;ndash;557

    PubMed  CAS  Google Scholar 

  • Joshi SG (2000) Cesalpinaceae It1;ndash; Cassia auriculata. Text book of medicinal plants. India Book House, Bangalore

    Google Scholar 

  • Joshi SC, Pant SC (2010) Effect of H2SO4 on seed germination and viability of Canna indica L, medicinal plant. J Am Sci 6:6

    Google Scholar 

  • Kager PA (2002) Malaria control: constraints and opportunities. Trop Med Int Health 7:1042It1;ndash;1046

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103(2):325It1;ndash;331

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Bagavan A, Rahuman AA, Zahir AA, Elango G, Pandiyan G (2009) Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae). Parasitol Res 104(5):1163It1;ndash;1171

    PubMed  CAS  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A, Elango G, Rajakumar G, Zahir AA, Marimuthu S, Santhoshkumar T, Jayaseelan C (2010) Evaluation of medicinal plant extracts against blood-sucking parasites. Parasitol Res 106:1403It1;ndash;1412

    PubMed  Google Scholar 

  • Kambu K, Tona L, Luki N, Cimaga K, Makuba W (1989) Evaluation de lIt1;rsquo;activité antimicrobienne de quelques préparations traditionnelles antidiarrhéiques utilisées dans la ville de Kinshasa-Zaïre. Bull de Méde Tradi Pharmacop 3(1):15It1;ndash;24

    Google Scholar 

  • Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V (2007) Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res 101(6):1721It1;ndash;1723

    PubMed  Google Scholar 

  • Karunamoorthi K, Ramanujam S, Rathinasamy R (2008) Evaluation of leaf extracts of Vitex negundo L. (Family: Verbenaceae) against larvae of Culex tritaeniorhynchus and repellent activity on adult vector mosquitoes. Parasitol Res 103:545It1;ndash;550

    PubMed  Google Scholar 

  • Kerharo J, Adam JG (1974) Pharmacopée sénégalaise traditionnelle. Plantes médicinales et toxiques. Edition Vigot It1;ndash; Frères, Paris

    Google Scholar 

  • Khan N, Sultana S (2005) Chemomodulatory effect of Ficus racemosa extract against chemically induced renal carcinogenesis and oxidative damage response in Wistar rats. Life Sci 29:1194It1;ndash;1210

    Google Scholar 

  • Khumrungsee N, Bullangpoti V, Pluempanupat W (2009) Efficiency of Jatropha gossypifolia L. (Euphorbiaceae) against Spodoptera exigua HIübner (Lepidoptera: Noctuidae): toxicity and its detoxifying enzyme activities. KKU Sci J (Suppl) 37:50It1;ndash;55

    Google Scholar 

  • Kiemer AK, Hartung T, Huber C, Vollmar AM (2003) Phyllanthus amarus has anti-inflammatory potential by inhibition of iNOS, COX-2, and cytokines via the NF-kB pathway. J Hepatol 38:289It1;ndash;297

    PubMed  Google Scholar 

  • Kirtikar KR, Basu BD (1975) Indian medicinal plants, vol 3, 2nd edn. International Book Distributors, Dehra Dun, pp 2327It1;ndash;2328

    Google Scholar 

  • Kirtikar KR, Basu BD (1987) Indian medicinal plants. Lalit mohan Basu, Allahabad, India, pp 1385It1;ndash;1386

    Google Scholar 

  • Kirtikar KR, Basu BA (1991) Indian medicinal plants, vol 3. Periodical Experts Book Agency, New Delhi, pp 2274It1;ndash;2277

    Google Scholar 

  • Kirtikar KR, Basu BD (1993) Indian medicinal plants, 2nd edn. Periodical Experts Books Agency, New Delhi, pp 499It1;ndash;505

    Google Scholar 

  • Kirtikar KR, Basu BD (1996) Indian medicinal plants, vol 3. International Book Distributors, Allahabad, 2247

    Google Scholar 

  • Kleinschmidt HE, Johnson RW (1977) Weeds of Queensland. It1;ndash; 147 s. (zitiert nach pier.)

    Google Scholar 

  • Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C (2005) Screening for larvicidal activity in some thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health 36:1412It1;ndash;1422

    PubMed  Google Scholar 

  • Kondrachine AV (1992) Malaria in WHO Southeast Asia region. Indian J Mal Res 29:129It1;ndash;160

    Google Scholar 

  • Kossou DK, Gbèhounou G, Ahanchédé A, Ahohuendo B, Bouraïma Y, Huis AV (2001) Indigenous cowpea production and protection practices in Benin. Insect Sci Appl 21(2):123It1;ndash;132

    Google Scholar 

  • Kuhn H (1965) Tobacco alkaloids and their pyrolysis products in the smoke. In: von-Euler US (ed) Tobacco alkaloids and related compounds. Pergamon, Oxford, pp 37It1;ndash;49

    Google Scholar 

  • Kumaran A, Karunakaran RJ (2006) Antioxidant activity of Cassia auriculata flowers. Fitoterapia 78(1):46It1;ndash;47

    PubMed  Google Scholar 

  • Kumaria R (2010) Correlation of disease spectrum among four Dengue serotypes: a five years hospital based study from India. Braz J Infect Dis 14(2):141It1;ndash;146

    PubMed  Google Scholar 

  • Kundu JK, Na HK, Surh YJ (2009) Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum Nutr 61:182It1;ndash;189

    PubMed  CAS  Google Scholar 

  • Kuppusamy C, Murugan K (2006) Mosquitocidal effect of ethanolic extracts of Andrographis paniculata Nees on filarial vector Culex quinqufasciatus Say (Diptera: Culicidae). In: International conference on diversity of insects: challenging issues in management and conservation, Tamil Nadu, India, 30 JanIt1;ndash;3 Feb 2006, pp 194

    Google Scholar 

  • Latha M, Pari L (2003) Preventive effects of Cassia auriculata L. flowers on brain lipid peroxidation in rats treated with streptozotocin. Mol Cell Biochem 243(1It1;ndash;2):23It1;ndash;28

    PubMed  CAS  Google Scholar 

  • Lee MJ, Rao YK, Chen K, Lee YC, Chung YS, Tzeng YM (2010) Andrographolide and 14-deoxy-11, 12-didehydroandrographolide from Andrographis paniculata attenuate high glucose-induced fibrosis and apoptosis in murine renal mesangeal cell lines. J Ethnopharmacol 132:497It1;ndash;505

    PubMed  CAS  Google Scholar 

  • Levetin E, McMahon TK (2003) Plants and society, 3rd edn. McGraw-Hill, Dubuque, Iowa

    Google Scholar 

  • Li H, Miyahara T, Tezuka Y (1998) The effect of Kampo formulae on bone resorption in vitro and in vivo. I.Active constituents of Tsu-kan-gan. Biol Pharm Bull 21:1322It1;ndash;1326

    PubMed  CAS  Google Scholar 

  • Li RW, Leach DN, Myers SP, Lin GD, Leach GJ, Waterman PG (2004) A new anti-inflammatory glucoside from Ficus racemosa L. Planta Med 70:421It1;ndash;426

    PubMed  CAS  Google Scholar 

  • Liu SY, Sporer F, Wink M, Jourdane J, Henning R, Li YL, Ruppel A (1997) Anthraquinones in Rheum palmatum and Rumex dentatus (Polygonaceae), and phorbol esters in Jatropha curcas (Euphorbiaceae) with molluscicidal activity against the schistosome vector snails Oncomelania, Biomphalaria, and Bulinus. TM IH Trop Med Int Health 2:179It1;ndash;188

    CAS  Google Scholar 

  • Lu Y, Luo J, Huang X, Kong L (2009) Four new steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids 74:95It1;ndash;101

    PubMed  CAS  Google Scholar 

  • Maasilamani G, Shokat A (1981) J Res Ayurveda Siddha 2:109

    Google Scholar 

  • Mahato RB, Chaudhary RP (2005) Ethnomedicinal study and antibacterial activities of selected plants of Palpa District, Nepal. Sci World 3:26It1;ndash;31

    Google Scholar 

  • Maity P, Hansda D, Bandyopadhyay U, Mishra DK (2009) Biological activities of crude extracts and chemical constituents of Bael, Aegle marmelos (L.) Corr. Indian J Exp Biol 47(11):849It1;ndash;861

    PubMed  CAS  Google Scholar 

  • Manandhar NP (1972) Fodder trees. The Rising Nepal 7:1It1;ndash;2

    Google Scholar 

  • Mandal SC, Tapan K, Maity J, Das M, Pal M, Saha BP (1999) Hepatoprotective activity of Ficus racemosa leaf extract on liver damage caused by carbon tetrachloride in rats. Phytother Res 13:430It1;ndash;432

    PubMed  CAS  Google Scholar 

  • Mandal SC, Saha BP, Pal M (2000) Studies on bacterial activity of Ficus racemosa leaf extract. Phytother Res 14:278It1;ndash;280

    PubMed  CAS  Google Scholar 

  • Manjunath MBL (1969) The wealth of India. PID CSIR, New Delhi, pp 109It1;ndash;110

    Google Scholar 

  • Mansingh A, Williams LAD (1998) Pesticidal potential of tropical plants It1;ndash; II. Acaricidal activity of crude extracts of several Jamaican plants. Insect Sci Appl 18:149It1;ndash;155

    Google Scholar 

  • Mansour F, Azaizeh H, Saad B, Tadmor Y, Abo-Moch F, Said O (2004) The potential of middle eastern flora as a source of new safe bio-acaricides to control Tetranychus cinnabarinus, the carmine spider mite. Phytoparasitica 32(1):66It1;ndash;72

    Google Scholar 

  • Martínez G, Delgado R, Pérez G (2000) Evaluations of the in vitro antioxidant activity of Mangifera indica L. extract (Vimang). Phytother Res 14:424It1;ndash;427

    PubMed  Google Scholar 

  • Matławska I, Sikorska M (2002) Flavonoid compounds in the flowers of Abutilon indicum (L.) Sweet (Malvaceae). Acta Pol Pharm 59(3):227It1;ndash;229

    PubMed  Google Scholar 

  • Matsuse TI, Lim YA, Hattori M, Correa M, Gupta MP (1999) A search for anti-viral properties in Panamanian medicinal plants It1;ndash; the effect on HIV and essential enzymes. J Ethnopharmacol 64:15It1;ndash;22

    PubMed  CAS  Google Scholar 

  • Meshram PB, Kulkarni N, Joshi KC (1996) Antifeedant activity of Azadirachta indica and Jatropha curcas against Papilio demoleus L. J Environ Biol 17:295It1;ndash;298

    CAS  Google Scholar 

  • Michael E, Bundy DAP, Grenfel BT (1996) Re-assessing the global prevalence and distribution of lymphatic filariasis. Parasitology 122:409

    Google Scholar 

  • Mishra V, Khan NU, Singhal KC (2005) Potential antifilarial activity of fruit extracts of Ficus racemosa Linn. against Setaria cervi in vitro. Indian J Exp Biol 43:346It1;ndash;350

    PubMed  Google Scholar 

  • Mishra SK, Sangwan NS, Sangwan RS (2007) Andrographis paniculata (Kalmegh): a review. Pharmacogn Rev 1:283It1;ndash;298

    CAS  Google Scholar 

  • Mishra K, Dash AP, Swain BK, Dey N (2009) Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin. Malar J 12:8It1;ndash;26

    Google Scholar 

  • Morsy TA, Rahem MA, Allam KA (2001) Control of Musca domestica third instar larvae by the latex of Calotropis procera (Family: Asclepiadaceae). J Egypt Soc Parasitol 31(1):107It1;ndash;110

    PubMed  CAS  Google Scholar 

  • Moursy LE (1997) Insecticidal activity of Calotropis procera extracts on the flesh fly, Sarcophaga haemorrhoidalis Fallen. J Egypt Soc Parasitol 2:505It1;ndash;514

    Google Scholar 

  • MIüller G, Schlein Y (2006) Sugar questing mosquitoes in arid areas gather on scarce blossoms that can be used for control. Int J Parasitol 36(10It1;ndash;11):1077It1;ndash;1080

    Google Scholar 

  • Murray JA (1989) Plants and drugs of Sind. Indus, Karachi, pp 154It1;ndash;155

    Google Scholar 

  • Murugan K, Jeyabalan D (1999) Mosquitocidal effect of certain plants extracts on Anophels stephensi. Curr Sci 76:631It1;ndash;633

    Google Scholar 

  • Mushobozy DMK, Nganilevanu G, Ruheza S, Swella GB (2009) Plant oils as common bean (Phaseolus vulgaris L.) seed protectants against infestations by the Mexican bean weevil Zabrotes subfascistus (Boh.). J Plant Prot Res 49(1):35It1;ndash;39

    Google Scholar 

  • Muthukrishnan J, Pushpalatha E, Kasthuribai A (1997) Biological effects of four plant extracts on Culex quinquefasciatus Say larval stages. Insect Sci Appl 17:389It1;ndash;394

    Google Scholar 

  • Nadkarni KM (1976) Indian materia medica. Popular Prakashan, Bombay, pp 850It1;ndash;885

    Google Scholar 

  • Nadkarni AC (1982) Indian material medica, vol 1, 3rd edn. Popular prakashan, Bombay

    Google Scholar 

  • Nadkarni KM, Nadkarni AK, Chopra RN (1976) Indian materia medica, vol 1. Popular Prakashan, Bombay, pp 548It1;ndash;550

    Google Scholar 

  • Navot N, Zamir D (1986) Linkage relationships of 19 protein-coding genes in atermelons. Theor Appl Genet 72(2):274It1;ndash;278

    CAS  Google Scholar 

  • Nayak SK, Singhai AK (1993) Anti-inflammatory and analgesic activity of roots of Cocculus hirsutus. Indian J Nat Prod 9:12It1;ndash;14

    Google Scholar 

  • Ndebia EJ, Kamga R, Nchunga-Anye Nkeh B (2007) Analgesic and anti-inflammatory properties of aqueous extract from leaves of Solanum torvum (Solanaceae). Afr J Tradit Complement Altern Med 4:240It1;ndash;244

    Google Scholar 

  • Nikkon F, Saud ZA, Rahman MM, Haque ME (2002) Biological activity of the extracts of the flower of Tagetes erecta Linn. J Biosci 10:117It1;ndash;119

    Google Scholar 

  • Nirmal SA, Shelke SM, Gagare PB, Jadhav PR, Dethe PM (2007) Antinociceptive and anthelmintic activity of Canna indica. Nat Prod Res 21(12):1042It1;ndash;1047

    PubMed  CAS  Google Scholar 

  • Obayed Ullah M, Sultana S, Haque A, Tasmin S (2009) Antimicrobial, cytotoxic and antioxidant activity of Centella asiatica. Eur J Sci Res 30:260It1;ndash;264

    Google Scholar 

  • Oliver-Bever B (1986) Medicinal plants in tropical West Africa. Cambridge University Press, London

    Google Scholar 

  • Oluwafemi F, Debiri F (2008) Antimicrobial effect of Phyllanthus amarus and Parquetina nigrescens on Salmonella typhi. Afr J Biomed Res 11:215It1;ndash;219

    Google Scholar 

  • Omoregbe RE, Ikuebe OM, Ihimire IG (1996) Antimicrobial activity of some medicinal plants extracts on Escherichia coli, Salmonella paratyphi and Shigella dysenteriae. Afr J Med Med Sci 25:373It1;ndash;375

    PubMed  CAS  Google Scholar 

  • Pialoux G, GaIüzère M, Jauréguiberry S, Strobel M (2007) Chikungunya, an epidemic arbovirus. Lancet Infect Dis 7:319It1;ndash;327

    PubMed  Google Scholar 

  • Porchezhian E, Ansari SH (2005) Hepatoprotective activity of Abutilon indicum on experimental liver damage in rats. Phytomedicine 12:62It1;ndash;64

    PubMed  CAS  Google Scholar 

  • Pousset JL (1989) Plantes médicinales africaines. Utilisation pratique. ACCT, Paris

    Google Scholar 

  • Prajapati V, Tripathi AK, Aggarwal KK, Khanuja SP (2005) Insecticidal, repellent and oviposition-deterrent activity of selected essential oils against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus. Bioresour Technol 96:1749It1;ndash;1757

    PubMed  CAS  Google Scholar 

  • Prakash A, Rao J (1997) Botanical pestcides in agriculture. CRC, Boca Raton, FL

    Google Scholar 

  • Prasanna R, Harish CC, Pichai R, Sakthisekaran D, Gunasekaran P (2008) Cassia auriculata leaf extract (CALE) was evaluated in human breast adenocarcinoma MCF-7 and human larynx carcinoma Hep-2 cell lines. Cell Biol Int 33(2):127It1;ndash;134

    PubMed  Google Scholar 

  • Promsiri S, Naksathit A, Kruatrachue M, Tharava U (2006) Evaluations of larvicidal activity of medicinal plant extracts to Aedes aegypti (Diptera: Culicidae) and other effects on a non target fish. Insect Sci 13:179It1;ndash;188

    Google Scholar 

  • Pushpalatha E, Muthukrishnan J (1995) Larvicidal activity of a few plant extracts against Culex quinquefasciatus and Anopheles stephensi. Indian J Malariol 32(1):14It1;ndash;23

    PubMed  CAS  Google Scholar 

  • Pushpalatha E, Muthukrishnan J (1999) Efficacy of two tropical plant extracts for the control of mosquitoes. J Appl Entomol 123:369It1;ndash;373

    Google Scholar 

  • Puttarak P, Charoonratana T, Panichayupakarananta P (2010) Antimicrobial activity and stability of rhinacanthins-rich Rhinacanthus nasutus extract. Phytomedicine 17:323It1;ndash;327

    PubMed  CAS  Google Scholar 

  • Raghavendra K, Subbarao SK (2002) Case studies on insecticide resistance and its anagement. In: Frederick G (ed) Proceedings of Mekong Malaria Forum, RMCP-EC, pp 17It1;ndash;21

    Google Scholar 

  • Rahman A, Talukder FA (2006) Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatusi. J Insect Sci 6(3):1It1;ndash;10

    CAS  Google Scholar 

  • Rahman M, Ismail HM, Yin LT (1990) Jatropholone a and Jatrophatrione two diterpenes from Jatropha-Gossypifolia. Pertanika 13:405It1;ndash;408

    CAS  Google Scholar 

  • Rahman MA, Taleb MA, Biswas MM (2003) Evaluation of botanical product as grain protectant against grain weevil, Sitophilus granarious (L.) on wheat. Asian J Plant Sci 2(6):501It1;ndash;504

    Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103:133It1;ndash;139

    PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102(5):981It1;ndash;988

    PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P, Gopalakrishnan G (2008b) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis Linn. Schrad. Parasitol Res 1036:1383It1;ndash;1390

    Google Scholar 

  • Rahuman AA, Venkatesan P, Geetha K, Gopalakrishnan G, Bagavan A, Kamaraj C (2008c) Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitol Res 103(2):333It1;ndash;339

    PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008d) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102(5):867It1;ndash;873

    PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K, Bagavan A (2008e) Mosquito larvicidal activity of isolated compounds from the rhizome of Zingiber officinale. Phytother Res 22(8):1035It1;ndash;1039

    PubMed  CAS  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009a) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(3):637It1;ndash;643

    PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Saravanan E, Zahir AA, Elango G (2009b) Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104(6):1365It1;ndash;1372

    PubMed  CAS  Google Scholar 

  • Rajakumar N, Shivanna MB (2009) Ethno-medicinal application of plants in the eastern region of Shimoga district, Karnataka, India. J Ethnopharmacol 126(1):64It1;ndash;73

    PubMed  CAS  Google Scholar 

  • Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, NairMG KR (2002) Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol 81:17It1;ndash;22

    PubMed  CAS  Google Scholar 

  • Rajkumar S, Jebanesan A (2005) Larvicidal and adult emergence inhibition effect of Centella asiatica Brahmi (Umbelliferae) against mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Afr J Biomed Res 8:31It1;ndash;33

    Google Scholar 

  • Ramos MV, Bandeira GP, de Freitas CDT, Nogueira NAP, Alencar NMN, de Sousa PAS, Carvalho AFU (2006) Latex constituents from Calotropis procera (R. Br.) displaytoxicity upon egg hatching and larvae of Aedes aegypti (Linn). Mem Instit Oswaldo Cruz 101(5): 503It1;ndash;510

    Google Scholar 

  • Rao BR, Murugesan T, Sinha S, Saha BP, Pal M, Mandal SC (2002) Glucose lowering efficacy of Ficus racemosa bark extract in normal and alloxan diabetic rats. Phytother Res 16:590It1;ndash;592

    Google Scholar 

  • Rao BR, Murugesan T, Pal M, Saha BP, Mandal SC (2003) Antitussive potential of methanol extract of stem bark of Ficus racemosa Linn. PhytotherRes 17:1117It1;ndash;1118

    Google Scholar 

  • Rao YK, Vimalamma G, Rao CV, Tzeng YM (2004) Flavonoids and andrographolides from Andrographis paniculata. Phytochemistry 65:2317It1;ndash;2321

    PubMed  CAS  Google Scholar 

  • Rastogi RP, Mehrota BN (1993) Compendium of Indian medicial plants, vols 2 and 3. Central Drug Research Institute and Publication and Information Directorate, Lucknow and New Delhi, pp 2, 174, 185, 295, 320

    Google Scholar 

  • Rastogi RP, Mehrotra BN (1995) Compendium of Indian medicinal plants, vols 1 and 4. Central Drug Research Institute and Publication and Information Directorate, , Lucknow and NewDelhi, pp 2, 188, 321

    Google Scholar 

  • Ratnasooriya WD, Jayakody JR, Nadarajah T (2003) Antidiuretic activity of aqueous bark extract of Sri Lankan Ficus racemosa in rats. Acta Biol Hung 54:357It1;ndash;363

    PubMed  CAS  Google Scholar 

  • Reyes BA, Bautista ND, Tanquilut NC, Anunciado RV, Leung AB, Sanchez GC, Magtoto RL, Castronuevo P, Tsukamura H, Maeda KI (2006) Anti-diabetic potentials of Momordica charantia and Andrographis paniculata and their effects on estrous cyclicity of alloxan-induced diabetic rats. J Ethnopharmacol 105:196It1;ndash;200

    PubMed  CAS  Google Scholar 

  • Rongsriyam Y, Trongtokit Y, Komalamisra N, Sinchaipanich N, Apiwathnasorn C, Mitrejet A (2006) Formulation of tablets from the crude extract of Rhinacanthus nasutus (Thai local plant) against Aedes aegypti and Culex quinquefasciatus larvae: a preliminary study. Southeast Asian J Trop Med Public Health 37(2):265It1;ndash;271

    PubMed  Google Scholar 

  • Rug M, Ruppel A (2000) Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop Med Inter Health 5:423It1;ndash;430

    CAS  Google Scholar 

  • Sabesan S, Planiyandi M, Das PK (2000) Mapping lymphatic filariasis. Ann Trop Med Parasitol 94:591

    PubMed  CAS  Google Scholar 

  • Sadhu SK, Okuyama E, Fujimoto H, Ishibashi M (2003) Separation of Leucas aspera, a medicinal plant of Bangladesh, guided by prostaglandin inhibitory and antioxidant activities. Chem Pharm Bull 51(5):595It1;ndash;598

    PubMed  CAS  Google Scholar 

  • Sahayaraj K (1998) Antifeedant effect of some plant extracts on the Asian armyworm, Spodoptera litura (Fabricius). Curr Sci 74:523It1;ndash;525

    Google Scholar 

  • Sánchez GM, Delgado R, Pérez G (2000) Evaluation of the in vitro antioxidant activity of Mangifera indica L. extract (Vimang). Phytother Res 14:424It1;ndash;427

    Google Scholar 

  • Sane RT, Kuber VV, Chalissery MS, Menon S (1995) Hepatoprotection by Phyllanthus amarus and Phyllanthus debili in Ccl4 induced liver dysfunction. Curr Sci 68(12):1243It1;ndash;1246

    Google Scholar 

  • Seenivasan SP, Jayakumar M, Raja N, Ignacimuthu S (2004) Effect of bitter apple, Citrullus colocynthis (L.) Schrad seed extracts against pulse beetle, Callosobruchus maculatus Fab. (Coleoptera: Bruchidae). Entomon 29(1):81It1;ndash;84

    Google Scholar 

  • Shaalan EAS, Canyon D, Younes MWF, Abdel-Wahab H, Mansour AH (2005) A review of botanical phytochemicals with mosquitocidal potential. Environ Int 31:1149It1;ndash;1166

    PubMed  CAS  Google Scholar 

  • Shahi M, Hanafi-Bojdb AA, Iranshahi M, Vatandoost H, Hanafi-Bojdd MY (2010) Larvicidal efficacy of latex and extract of Calotropis procera (Gentianales: Asclepiadaceae) against Culex quinquefasciatus and Anopheles stephensi (Diptera: Culicidae). J Vector Borne Dis 47:185It1;ndash;188

    PubMed  CAS  Google Scholar 

  • Sharma N, Trivedi PC (2002) Screening of leaf extracts of some plants for their nematicidal and fungicidal properties against Meloidogyne incognita and Fusarium oxysporum. Asian J Exp Sci 16:21It1;ndash;28

    CAS  Google Scholar 

  • Sharma A, Singh RT, Handa SS (1993) Estimation of phyllanthin and hypophyllanthin by high performance liquid chromatography in Phyllanthus amarus. Phytochem Anal 4:226It1;ndash;229

    CAS  Google Scholar 

  • Shelly TE, McInnis DO (2001) Exposure to ginger root oil enhances mating success of irradiated, mass-reared males of Mediterranean fruit fly (Diptera: Tephritidae). J Econ Entomol 94:1413It1;ndash;1418

    PubMed  CAS  Google Scholar 

  • Shelly TE, Rendon P, Hernandez E, Salgado S, McInnis D, Villalobos E, Liedo P (2003) Effects of diet, ginger root oil, and elevation on the mating competitiveness of male Mediterranean fruit flies (Diptera: Tephritidae) from a mass-reared, genetic sexing strain in Guatemala. J Econ Entomol 96:1132It1;ndash;1141

    PubMed  Google Scholar 

  • Silva TM, Batista MM, Camara CA, Agra MF (2005) Molluscicidal activity of some Brazilian Solanum spp. (Solanaceae) against Biomphalaria glabrata. Ann Trop Med Parasitol 99:419It1;ndash;425

    PubMed  CAS  Google Scholar 

  • Singh RN, Saratchandra B (2005) The development of botanical products with special reference to seri-ecosystem. Caspian J Environ Sci 3(1):1It1;ndash;8

    CAS  Google Scholar 

  • Singhi M, Joshi V, Sharma RC, Sharma K (2004) Ovipositioning behaviour of Aedes aegypti in different concentrations of latex of Calotropis procera: studies on refractory behaviour and its sustenance across gonotrophic cycles. Dengue Bull 28:184It1;ndash;188

    Google Scholar 

  • Siripong P (2006) Induction of apoptosis in tumor cells by three naphthoquinone esters isolated from Thai medicinal plant: Rhinacanthus nasutus Kurz. Biol Pharm Bull 29(10):2070It1;ndash;2076

    PubMed  CAS  Google Scholar 

  • Siripong P, Kanokmedakul K, Piyaviriyagul S, Yahuafai J, Ruchirawat S, Ruchirawat S, Oku N (2006) Antiproliferative naphthoquinone esters from Rhinacanthus nasutus Kurz. roots on various cancer cells. J Trad Med 23:166It1;ndash;172

    CAS  Google Scholar 

  • Sivapriya M, Srinivas L (2007) Isolation and purification of a novel antioxidant protein from thewater extract of Sundakai (Solanum torvum) seeds. Food Chem 104:510It1;ndash;517

    CAS  Google Scholar 

  • Srivastava J, Vankar PS (2010) Canna indica flower: new source of anthocyanins. Plant Physiol Biochem 48:1015It1;ndash;1019

    PubMed  CAS  Google Scholar 

  • Subramanian SS, Nagarajan S, Sulochana N (1971) Flavonoids of the Leaves of Jatropha Gossypifolia-D (Oxford). Phytochemistry 10:2548It1;ndash;2549

    Google Scholar 

  • Surana SJ, Gokhale SB, Jadhav RB, Sawant RL, Wadekar JB (2008) Antihyperglycemic activity of various fractions of Cassia auriculata Linn. in alloxan diabetic rats. Indian J Pharm Sci 70(2):227It1;ndash;229

    PubMed  CAS  Google Scholar 

  • Suresh Reddy J, Rajeswara Rao P, Reddy MS (2002) Wound healing effects of Heliotropium indicum, Plumbago zeylanicum and Acalypha indica in rats. J Ethnopharmacol 79:249It1;ndash;251

    PubMed  Google Scholar 

  • Taylor WG, Fields PG, Elder JL (2004a) Insecticidal components from field pea extracts: isolation and separation of peptide mixtures related to pea albumin 1b. J Agric Food Chem 52(25):7491It1;ndash;7498

    PubMed  CAS  Google Scholar 

  • Taylor WG, Fields PG, Sutherland DH (2004b) Insecticidal components from field pea extracts: soyasaponins and lysolecithins. J Agric Food Chem 52(25):7484It1;ndash;7490

    PubMed  CAS  Google Scholar 

  • Thyagarajan SP, Subramanian S, Thirunalasundari T, Venkateswaran PS, Blumberg BS (1988) Effect of Phyllanthus amarus on chronic carriers of hepatitis B virus. Lancet 2:764It1;ndash;766

    PubMed  CAS  Google Scholar 

  • Tinzaara W, Tushemereirwe W, Nankinga CK, Gold CS, Kashaija I (2006) The potential of using botanical insecticides for the control of the banana weevil, Cosmopolites sordidus (Coleoptera: Curculionidae). Afr J Biotechnol 5(20):1994It1;ndash;1998

    Google Scholar 

  • Tona L, Kambu K, Ngimbi N (2000) Antiamoebic and spasmolytic activities of extracts from some antidiarrhoeal traditional preparations used in Kinshasa, Congo. Phytomedicina 7:31It1;ndash;38

    CAS  Google Scholar 

  • Unander DW, Venkateswaran PS, Millman I, Bryan HH, Blumberg BS (1990) Phyllanthus species: sources of new antiviral compounds. In: Janick J, Simon JE (eds) Advances in new crops. Timber, Portland, USA, pp 518It1;ndash;521

    Google Scholar 

  • Unander DW, Webster GL, Blumberg BS (1991) Uses and bioassays in Phyllanthus (Euphorbiaceae): a compilation II. The subgenus Phyllanthus. J Ethnopharmacol 34:97It1;ndash;133

    PubMed  CAS  Google Scholar 

  • Upasani SM, Kotkar HM, Mendki PS, Maheshwari VL (2003) Partial characterization and insecticidal properties of Ricinus communis L. foliage flavonoids. Pest Manage Sci 59:1349It1;ndash;1354

    CAS  Google Scholar 

  • Van Quaquebeke E, Simon G, André A, Dewelle J, El Yazidi M, Bruyneel F, Tuti J, Nacoulma O, Guissou P, Decaestecker C, Braekman JC, Kiss R, Darro F (2005) Identification of a novel cardenolide (2It1;Prime;-oxovoruscharin) from Calotropis procera and the hemisynthesis of novel derivatives displaying potent in vitro antitumor activities and high in vivo tolerance: structure-activity relationship analyses. J Med Chem 48(3):849It1;ndash;856

    Google Scholar 

  • Vedavathi S, Mrudula V, Sudhakar A (1997) Tribal medicine of Chittoor district, AndhraPradesh, India, vols. 48It1;ndash;49. Herbal Folklore Research Center, Tirupati

    Google Scholar 

  • Vihari V (1995) Ethnobotany of cosmetics of Indo-Nepal border. Ethnobotany 7:89It1;ndash;94

    Google Scholar 

  • Vineetha A, Murugan K (2009) Larvicidal and smoke repellency effect of Toddalia asiatica and Aegle marmelos against the dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Entomol Res 39:61It1;ndash;65

    Google Scholar 

  • Viquaruddin A, Iqbal S (1992) Cohirsutin, a new iso-quinoline alkaloid from Cocculus hirsutus. Fitoterapia 63:308It1;ndash;310

    Google Scholar 

  • Viquaruddin A, Iqbal S (1993) Jamtinine, an alkaloid from Cocculus hirsutus. Phytochemistry 33:735It1;ndash;736

    Google Scholar 

  • Viquaruddin A, Tahir R (1991) Cohirsinine, a new alkaloid from Cocculus hirsutus. Phytochemistry 30:1350It1;ndash;1351

    Google Scholar 

  • Watt JM, Breyer-Brandwijk MG (1962) The medicinal and poisonous plants of Southern and Eastern Africa, vol 1, 2nd edn. Churchill, London

    Google Scholar 

  • WBSICP (1997) World Bank stresses importance of coming phytomedicines. Newsl Asian Netw Med Aromatic Plants 23:5It1;ndash;6

    Google Scholar 

  • WHO (2002) WHO Traditional Medicine Strategy 2002It1;ndash;2005. World Health Organization, Geneva

    Google Scholar 

  • WHO (2004) First Meeting of the Regional Technical Advisory Group on Malaria, Manesar, Haryana, India. SEA-MAL 239:1It1;ndash;38

    Google Scholar 

  • Wiart C, Mogana S, Califa S, Mahan M, Ismael S, Bucle M, Narayana AK, Sulaiman M (2004) Antimicrobial screening of plants used for traditional medicine in the state of Perak, Peninsular Malaysia. Fitoterapia 75:68It1;ndash;73

    PubMed  CAS  Google Scholar 

  • Williams LAD, Mansingh A (1993) Pesticidal potentials of tropical plants It1;ndash; I. Insecticidal activity in leaf extracts of sixty plants. Insect Sci Appl 14:697It1;ndash;700

    Google Scholar 

  • Wink M (2004) Phytochemical diversity of secondary metabolites. Encyclopedia of plant and crop science. Taylor and Francis, Amsterdam, pp 915It1;ndash;919

    Google Scholar 

  • Wink M, Koschmieder C, Sauerwein M, Sporer F (1997) Phorbol esters of Jatropha curcas It1;ndash; biological activities and potential applications. In: GIübitz GM, Mittelbach M, Trabi M (eds) Biofuel and industrial products from Jatropha curcas. Dbv- Verlag Univ, Graz

    Google Scholar 

  • Wu TS, Hsu HC, Wu PL, Teng CM, Wu YC (1998) Rhinacanthin-Q, a naphthoquinone from Rhinacanthus nasutus and its biological activity. Phytochemistry 49:2001It1;ndash;2003

    PubMed  CAS  Google Scholar 

  • Yadav RL, Lal S, Kaul SM (1999) Malaria epidemic and its control in India. Family Med 3:39It1;ndash;41

    Google Scholar 

  • Yeh SF, Hong CY, Huang YL, Liu TY, Choo KB, Chou CK (1993) Effect of an extract from Phyllanthus amarus on hepatitis B surface antigen gene expression in human hepatoma cells. Antivir Res 20:185It1;ndash;192

    PubMed  CAS  Google Scholar 

  • Yoganarasimhan SN (2000) Medicinal plants of India, vol 2. Cyber Media, Bangalore, p 10

    Google Scholar 

  • Yoosook C, Bunyapraphatsara N, Boonyakiat Y, Kantasuk C (2000) Anti-Herpex simplex virus activities of crude water extracts of Thai medicinal plants. Phytomedicine 6:411It1;ndash;419

    PubMed  CAS  Google Scholar 

  • Yu BC, Hung CR, Chen WC, Cheng JT (2003) Antihyperglycemic effect of andrographolide in streptozotocin-induced diabetic rats. Planta Med 69:1075It1;ndash;1079

    PubMed  CAS  Google Scholar 

  • Yuanyuan LU, Jianguang L, Xuefeng H, Lingyi K (2009) Four steroidal glycosides from Solanum torvum and their cytotoxic activities. Steroids 74:95It1;ndash;101

    Google Scholar 

  • Zahir AA, Rahuman AA, Kamaraj C, Bagavan A, Elango G, Sangaran A, Kumar BS (2009) Laboratory determination of efficacy of indigenous plant extracts for parasites control. Parasitol Res 105:453It1;ndash;461

    PubMed  Google Scholar 

  • Zahir AA, Rahuman AA, Bagavan A, Santhoshkumar T, Mohamed RR, Kamaraj C, Rajakumar G, Elango G, Jayaseelan C, Marimuthu S (2010) Evaluation of botanical extracts against Haemaphysalis bispinosa Neumann and Hippobosca maculata Leach. Parasitol Res 107(3):585It1;ndash;592

    PubMed  Google Scholar 

  • Zheng MS, Lu ZY (1990) Antiviral effect of mangiferin and isomangiferin on Herpex simplex virus. Chin Med J 103:160It1;ndash;165

    PubMed  CAS  Google Scholar 

  • Zheng CJ, Qin LP (2007) Chemical components of Centella asiatica and their bioactivities. Chin Integr Med/Zhong Xi Yi Jie He Xue Bao 5(3):348It1;ndash;351

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdul Rahuman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rahuman, A.A. (2011). Efficacies of Medicinal Plant Extracts Against Blood-Sucking Parasites. In: Mehlhorn, H. (eds) Nature Helps.... Parasitology Research Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19382-8_2

Download citation

Publish with us

Policies and ethics