Skip to main content

Blowfly Strike and Maggot Therapy: From Parasitology to Medical Treatment

  • Chapter
  • First Online:
Nature Helps...

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 1))

  • 1371 Accesses

Abstract

Patients, especially elderly and diabetic ones, may develop chronic wounds on the leg and foot, so called ulcers, which are open sores that go through the skin. These often tend not to heal due to insufficient circulation, will eventually get infected, and might result in serious consequences such as amputation. Physicians all over the world are involved in the daily conflict as to how to treat such wounds, which are even when not life threatening very unpleasant for these patients as they usually have a strong smell and produce continuous pain. Within the last 20 years the treatment of wounds has not been based on a dry dressing but on a wet dressing (products such as hydrogel) and healing as the primary goal is obtained in some cases. Chronic wounds will heal only when the insufficient circulation is stopped. Most often it is required that all the dead material is removed from a wound, therefore a debridement of the wound is undertaken. Although there is no clear evidence that debridement is useful for wound healing at all, several techniques are in use. One of these is forced myiasis, MDT. Maggot debridement therapy (MDT) is a very efficient debridement technique and otherwise necessary amputations are avoided in some cases. For this therapy Lucilia spec. are the least invasive fly larvae tested for MDT and Lucilia sericata is in use in most places of the world. Other, more frequently found species of Lucilia are in use in some countries as well.

As maggots are fly larvae and they live on the patients wound they usually do not distinguish between dead and vital tissue and must be used in correct doses. Therapy should be stopped when pain occurs or bleeding is observed. The fly larvae combat some multiresistant bacteria, for example MRSA, but many gram-negative bacteria are contra-indicated as they might kill the fly larvae. The spit of the fly larvae contains a powerful mixture of enzymes and protein-based antibiotics, both of which are under evaluation for their use as a pharmaceutical drug. Either these compounds isolated from maggots or well-dosed fly larvae can be used for debridement of chronic wounds. Acute dehiscent wounds can be debrided efficiently by maggots and closed afterwards by other standard techniques for fast healing.

Larval treatment costs are in the same range or slightly higher compared to standard treatment when used for leg ulcers. Compared to products such as hydrogel no additional benefit was found in all available randomized clinical studies on fly larvae treatment on chronic wounds. Therefore, MDT should be used for selected patients only, especially as there is no full market authorization in Europe or anywhere else in the world apart from USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altincicek B, Vilcinskas A (2009) Septic injury-inducible genes in medicinal maggots of the green blow fly Lucilia sericata. Insect Mol Biol 18(1):119–125. doi:10.1111/j.1365-2583.2008.00856.x

    Article  PubMed  CAS  Google Scholar 

  • Amendt J, Krettek R, Zehner R (2004) Forensic entomology. Naturwissenschaften 91:51–65. doi:10.1007/s00114-003-0493-5

    Article  PubMed  CAS  Google Scholar 

  • Andersen AS (2010) personnel communication to the authors, Copenhagen Wound Healing Center, Bispebjerg Hospital & ABMP, Statens Serum Institut, Denmark

    Google Scholar 

  • Andersen AS, Joergensen B, Bjarnsholt T, Johansen H, Karlsmark T, Givskov M, Krogfelt KA (2010) Quorum-sensing-regulated virulence factors in Pseudomonas aeruginosa are toxic to Lucilia sericata maggots. Microbiology 156:400–407

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Sing LC, Babtista C (2010) Antibacterial activity of Lucilia cuprina maggot extracts and its extraction techniques. Int J Integr Biol 9:43–48

    Google Scholar 

  • Barnes KM, Gennard DE (2010) The effect of bacterially-dense environments on the development and immune defences of the blowfly Lucilia sericata. Physiol Entomol. doi:10.1111/j.1365-3032.2010.00759.x. Accessed 2010-11-30

    Google Scholar 

  • Barnes KM, Gennard DE, Dixon RA (2010) An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull Entomol Res. doi:10.1017/S000748530999071X

    PubMed  Google Scholar 

  • Bekins L (2010) Thesis, Maggot Therapy for Removal of Non-healing Wounds, School of Physician Assistant Studies, Pacic University

    Google Scholar 

  • Bell-Syer S (2010) Managing Editor for the Cochrane Wounds Group, personnel communication to the authors.

    Google Scholar 

  • Berger M (2006) Thesis, Identifizierung biologisch aktiver Peptide und Proteine in den Sekreten von Lucilia sericata im Wundheilungsgeschehen, University of Cologne

    Google Scholar 

  • Bexfield A, Nigam Y, Thomas S, Ratcliffe NA (2004) Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillinresistant Staphylococcus aureus (MRSA). Microbes Infect 6:1297–1304

    Article  PubMed  CAS  Google Scholar 

  • Bexfield A, Bond AE, Roberts EC, Dudley E, Nigam Y, Thomas S, Newton RP, Ratcliffe NA (2008) The antibacterial activity against MRSA strains and other bacteria of a <500 Da fraction from maggot excretions/secretions of Lucilia sericata (Diptera: Calliphoridae). Microbes Infect 10:325–333

    Article  PubMed  Google Scholar 

  • Bexfield A, Bond AE, Morgan C, Wagstaff J, Newton RP, Ratcliffe NA, Dudley E, Nigam Y (2010) Amino acid derivatives from Lucilia sericata excretions/secretions may contribute to the beneficial effects of maggot therapy via increased angiogenesis. Br J Dermatol 162(3):554–562

    Article  PubMed  CAS  Google Scholar 

  • BingHong X, LiPing Z, YuChuan A, MingZhu S, XianJun Y, JinFen L (2004) Induction and characterization of antibacterial substances in the blowfly Lucilia sericata. Chin J Zoonoses, 2004, 06-017

    Google Scholar 

  • Blum K, Mendez S, Miller-Cox D (2010), Uncommon applications of maggot therapy for common an problematic wounds. In: 8th International Conference on Biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Bunkis J, Gherini S, Walton RL (1985) Maggot therapy revisited. West J Med 142:554–556

    PubMed  CAS  Google Scholar 

  • Cazander G, van Veen KEB, Bernards AT, Jukema GN (2009) Do maggots have an influence on bacterial growth? A study on the susceptibility of strains of six different bacterial species to maggots of Lucilia sericata and their excretions/secretions. J Tissue Viab 18:80–87. doi:10.1016/j.jtv.2009.02.005

    Google Scholar 

  • Čeřovský V, Zdarek J, Fučík V, Monincová L, Voburka Z, Bém R (2010) Lucifensin, the long-sought antimicrobial factor of medicinal maggots of the blowfly Lucilia sericata. Cell Mol Life Sci 67:455–466. doi: 10.1007/s00018-009-0194-0

    Google Scholar 

  • Çetinkaya M, Özkan H, Köksal N, Coşkun SZ, Hacımustafaoğlu M (2008) Neonatal myiasis: a case report. Turk J Pediatr 50:581–584

    PubMed  Google Scholar 

  • Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, Church JCT, Pritchard DI (2003) Degradation of extracellular matrix components by defined proteases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol 148:14–23

    Article  PubMed  CAS  Google Scholar 

  • Chan DCW, Fong DHF, Leung JYY, Patil NG, Leung GKK (2007) Maggot debridement therapy in chronic wound care. Hong Kong Med J 13:382–386

    PubMed  Google Scholar 

  • Church JC (2010) personnel communication to the authors

    Google Scholar 

  • Courtenay M, Church JC, Ryan TJ (2000) Larva therapy in wound management. J R Soc Med 93:72–74

    PubMed  CAS  Google Scholar 

  • Daeschlein G, Hoffmeister B, Below H, Kramer A (2006) GMS Krankenhaushygiene Interdisziplinär, 1(1), ISSN 1863–5245

    Google Scholar 

  • Derraik JGB, Heath ACG, Rademaker M (2010) Human myiasis in New Zealand: imported and indigenously-acquired cases; the species of concern and clinical aspects. NZMJ 123(1322). doi: http://www.nzma.org.nz/journal/123-1322/4333/

  • Dossey L (2002) Maggots and leeches: when science and aesthetics collide. Altern Ther Health Med 8:12–17

    Google Scholar 

  • Dumville JC, Worthy G, Bland JM, Cullum N, Dowson C, Iglesias CP, Mitchell JL, Nelson EA, Soares MO, Torgerson DJ (2009a) Fly larvae therapy for leg ulcers (VenUS II) randomized controlled trial. BMJ 338:b773. doi:10.1136/bmj.b773

    Article  PubMed  Google Scholar 

  • Dumville JC, Worthy G, Soares MO, Bland JM, Cullum N, Dowson C, Iglesias C, McCaughan D, Mitchell JL, Nelson EA, Torgerson DJ on behalf of the VenUS II team (2009b) VenUS II: a randomized controlled trial of larval therapy in the management of leg ulcers Health Technology Assessment 2009; Vol. 13: No. 55 DOI: 10.3310/hta13550.

  • Dunn C, Raghavan U, Pfleiderer AG (2002) The use of maggots in head and neck necrotizing fasciitis. J Laryngol Otol 116:70–72

    Article  PubMed  Google Scholar 

  • Edwards J, Stapley S (2010) Debridement of diabetic foot ulcers. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD003556. doi: 10.1002/14651858.CD003556.pub2

  • Fine A, Alexander H (1934) Maggot therapy: technique and clinical application. J Bone Joint Surg 16:572–582

    Google Scholar 

  • Fleischmann W (1999) Verbandmaterial mit dem Sekret von Fliegenlarven, EP 1020197B1 (1999-12-31)

    Google Scholar 

  • Fleischmann W, Grassberger M, Sherman R (2004) Maggot therapy. Thieme, Stuttgart, New York. ISBN 3-13-136811-x

    Google Scholar 

  • Geary MJ, Russell RC (2010) Maggot debridement therapy (MDT)- not a ‘fly by night’ therapy, vol 17. Centre of Infectious Diseases and Microbiology, pp 1–2

    Google Scholar 

  • Gohar YM, Tantawi TI, El-Ghaffar HA, El-Shazly BMA (2010) The antibacterial acidity of medicinal maggots of the blow fly Lucilia cuprina against multidrug-resistance bacteria frequently infected diabetic foot ulcers in Alexandria, Egypt: a preliminary in vitro study. In: 8th International Conference on Biotherapy, Los Angeles, CA, USA, 2010-11-12

    Google Scholar 

  • Golinko MS, Joffe R, Maggi J, Cox D, Chandrasekaran EB, Tomic-Canic RM, Brem H (2008) Operative debridement of diabetic foot ulcers. J Am Coll Surg 207:E1–E6

    Article  PubMed  Google Scholar 

  • Grassberger M (2002) Entomologie und Parasitologie, Fliegenmaden: Parasiten und Wundheiler, Denisia 6. Neue Folge 184:507–534

    Google Scholar 

  • Gray P (2008) Is larval (Maggot) debridement effective for removal of necrotic tissue from chronic wounds? J Wound Ostomy Continence Nurs 35:378–384. doi:10.1097/01.WON.0000326655.50316.0e

    Article  PubMed  Google Scholar 

  • Gupta A (2008) A review of the use of maggots in wound therapy. Ann Plastic Surg 60:224–227. doi:10.1097/SAP.0b013e318053eb5e

    Article  CAS  Google Scholar 

  • Heuer H, Heuer L (2010a) Deutsche Apotheker Zeitung 150:394–395

    Google Scholar 

  • Heuer H, Heuer L (2010b) Pain release drugs in MTD – Uncover the physiological interaction. In: 8th International Conference on Biotherapy, Los Angeles, CA, USA, 2010-11-12

    Google Scholar 

  • Horobin AJ, Shakesheff KM, Pritchard DI (2006) Promotion of human dermal fibroblast migration, matrix remodelling and modification of fibroblast morphology within a novel 3D model by Lucilia sericata larval secretions. J Invest Dermatol 126:1410–1418

    Article  PubMed  CAS  Google Scholar 

  • Hsiao FC, Chen Y, Chang LW (2008) Umbilical myiasis in a healthy adult. South Med Assoc 101(10):1054–1055

    Google Scholar 

  • Hubermann L, Gollop N, Mumcuoglu KY, Block C, Galun R (2007a) Antibacterial properties of whole body extracts and haemolymph of Lucilia sericata maggots. J Wound Care 16:123–127

    Google Scholar 

  • Hubermann L, Gollop N, Mumcuoglu YK, Breuer E, Bhusare SR, Sha Y, Galun R (2007b) Antibacterial substances of low molecular weight isolated from the blowfly, Lucilia sericata. Med Vet Entomol 21:127–131. doi:10.1111/j.1365-2915.2007.00668.x

    Article  Google Scholar 

  • Jaklič D, Lapanje A, Zupančič K, Smrke D, Gunde-Cimerman N (2008) Selective antimicrobial activity of maggots against pathogenic bacteria. J Med Microbiol 57:617–625. doi:10.1099/jmm.0.47515-0

    Article  PubMed  Google Scholar 

  • Kawabata T, Mitsui H, Yokota K, Ishino K, Oguma K, Sano S (2010) Induction of antibacterial activity in larvae of the blowfly Lucilia sericata by an infected environment. Med Vet Entomol 24:375. doi:10.1111/j.1365-2915.2010.00902.x

    Article  PubMed  CAS  Google Scholar 

  • Kerridge A, Lappin-Scott H, Stevens JR (2005) Antibacterial properties of larval secretions of the blowfly, Lucilia sericata. Med Vet Entomol 19:333–337

    Article  PubMed  CAS  Google Scholar 

  • Kondakcia GO, Bulbula O, Shahzada MS, Polatb E, Cakana H, Altuncula H, Filoglu G (2009) STR and SNP analysis of human DNA from Lucilia sericata fly larvae’s gut contents. Forensic Sci Int Genet Suppl 2(1):178–179

    Article  Google Scholar 

  • Lederle Laboratories (1932) Council on Pharmacy and Chemistry, Surgical Maggots-Lederle, Journal of the American Association (JAMA), advert 1932

    Google Scholar 

  • Margolin L, Gialanella P (2010) Assessment of the antimicrobial properties of maggots. Int Wound J 7(3):202–204

    Article  PubMed  Google Scholar 

  • Maude Adverse Event Report (2009) Monarch labs, LLC. Medical maggots with Leflap dressing. Lot Number MM-090406/CCII-090 Event Date 04/13/2009 Event Type Injury Patient Outcome Hospitalization

    Google Scholar 

  • Maude Reports (2009) http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=1394596, http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=1394598

  • Mehlhorn H, Schmidt J, Walldorf V (2005) Zucht von Lucilia-, Phormia-, Sarcophaga- und Calliphora-Larven und Puppen auf Pflanzenextrakten, DE10328102A1 20.01.2005

    Google Scholar 

  • Mirabzadeh A, Ladani MJN, Brojerdi SS, Imani B (2010) Maggot therapy in Iran. In: 8th International conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Mitsui H, Kawabata T, Ugaki S, Fujii Y, Sakrai S, Sano S (2010) Maggot debridement therapy for treating diabetic foot ulcers in Japan. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Mumcuoglu KY, Ingber A, Gilead L (1999) Maggot therapy for the treatment of intractable wounds. Int J Dermatol 38(8):623–627

    Article  PubMed  CAS  Google Scholar 

  • Mumcuoglu K, Davidson E, Gilead L (2010a) Pain related to maggot debridement therapy. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Mumcuoglu K, Gilead L, Ingber A (2010b) The use of maggot debridement therapy in the treatment of chronic and acute wounds in hospitalized and ambulatory patients of the Hadassah University Hospital Jerusalem. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov

    Google Scholar 

  • Namias N, Varela JE, Varas RP, Quintana O, Ward CG (2000) Biodebridement: a case report of maggot therapy for limb salvage after fourthdegree burns. J Burn Care Rehab 21:254–257

    Article  CAS  Google Scholar 

  • National History Museum (2010) http://www.nhm.ac.uk/print-version/?p=/research-curation/research/projects/myiasis-larvae/intro-myiasis/index.html. Accessed 05 Dec 2010

  • Nenoff P, Herrmann A, Gerlach C, Herrmann J, Simon JC (2010) Biochirurgisches Débridement mittels Lucilia sericata-Maden – ein Update, Wien Med Wochenschr 1–8. doi: 10.1007/s10354-010-0806-1

  • Nigam Y, Dudley E, Bexfield A, Bond AE, Evans J, James J (2010) The physiology of wound healing by the medicinal maggot, Lucilia sericata. Adv Insect Physiol 39:39–81

    Article  Google Scholar 

  • Nuesch R, Rahm G, Rudin W, Steffen I, Frei R, Rufli T, Zimmerli W (2002) Clustering of bloodstream infections during maggot debridement therapy using contaminated fly larvae of Protophormia terraenovae. Infection 30:306–309

    Article  PubMed  CAS  Google Scholar 

  • Park SO, Shin JH, Choi WK, Park BS, Seok Oh J, Jang A (2010) Antibacterial activity of house fly-maggot extracts against MRSA (Methicillin-resistant Staphylococcus aureus) and VRE (Vancomycin-resistant enterococci). J Environ Biol 31(5):865–871

    CAS  Google Scholar 

  • Paul AG, Ahmad NW, Lee HL, Ariff AM, Saranum M, Naicker AS, Osman Z (2009) Maggot debridement therapy with Lucilia cuprina: a comparison with conventional debridement in diabetic foot ulcers. Int Wound J 6(1):39–46. http://www.onlinelibrary.wiley.com/doi/ 10.1111/j.1742-481X.2008.00564.x/pdf. Accessed 19 Sept 2010

    Google Scholar 

  • Pavillard ER, Wright EA (1957) An antibiotic from maggots. Nature 180:916–917

    Article  PubMed  CAS  Google Scholar 

  • Petherick ES, O'Meara S, Spilsbury K, Iglesias CP, Nelson EA, Torgerson DJ (2006) Patient acceptability of larval therapy for leg ulcer treatment: a randomised survey to inform the sample size calculation of a randomised trial. BMC Med Res Methodol 6:43. doi:10.1186/1471-2288-6-43

    Article  PubMed  CAS  Google Scholar 

  • Poetker DM, Cristobal R, Smith TL (2006) Head & Neck Surgery – Otolaryngology, 4th edn. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  • Post K, Riesner D, Walldorf V, Mehlhorn H (1999) Fly fly larvae and pupae as vectors for scrapie. Lancet 354(9194):1969–1970

    Article  PubMed  CAS  Google Scholar 

  • Prete PE (1997) Growth effects of Phaenicia sericata larval extracts on fibroblasts: mechanism for wound healing by maggot therapy. Life Sci 60(8):505–510

    Article  PubMed  CAS  Google Scholar 

  • Pritchard DI (2001) Protease from Lucila sericata and its use in treatment of wounds, WO/2001/031033

    Google Scholar 

  • Pritchard DI (2006) Treatment of wounds, US 7144721 B1

    Google Scholar 

  • Pritchard D (2010) The Greenbottle Pharmacy Project: Next generation wound debridement products. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Pritchard DI, Horobin AJ, Brown A (2009) Larval polypeptides having a nuclease activity, US020090304668A1

    Google Scholar 

  • Pritchard DI, Horobin AJ, Brown A (2010) Chymotrypsin from Lucilia sericata fly larvae and its use for the treatment of wounds, US20100008898

    Google Scholar 

  • Probst W, Vasel-Biergans A (2010) Wundmanagement. WVG, Stuttgart, p 337 ff.

    Google Scholar 

  • Rufli T, Rudin W (2002) Biochirurgie: Bewährtes Verfahren in der Wundbehandlung. Dtsch Arztebl 99:A2038–A2039

    Google Scholar 

  • Schmidt M (2009) Madentherapie statt Amputation, ph Nr. 23 Dezember 2009, pp 30–32

    Google Scholar 

  • Sherman RA (2002) Maggot versus conservative debridement therapy for the treatment of pressure ulcers. Wound Rep Reg 10:208–214

    Article  Google Scholar 

  • Sherman RA (2003) Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Diabetes Care 26:446–451

    Article  PubMed  Google Scholar 

  • Sherman RA (2009) Maggot therapy takes us back to the future of wound care: new and improved maggot therapy for the 21st century. J Diabetes Sci Technol 3:336–344

    PubMed  Google Scholar 

  • Sherman RA (2010a) Antimicrobially-primed medicinal maggot therapy, WO 2010/011611 A2

    Google Scholar 

  • Sherman RA (2010b) In search of pain-free MDT: Effects of lidocaine on the debridement capacity of medicinal maggots. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Sherman RA (2010c) In search of pain-free MDT: Healing properties of maggot therapy – What is the evidence? In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Sherman RA, Tran JMT, Sullivan R (1996) Maggot therapy for venous stasis ulcers. Arch Dermatol 132:254–256

    Article  PubMed  CAS  Google Scholar 

  • Sherman RA, Hall MJR, Thomas S, Maggots M (2000) An ancient remedy for some contemporary afflictions. Annu Rev Entomol 45:55–81

    Article  PubMed  CAS  Google Scholar 

  • Simmons S (1935) A bacteriocidal principle in excretions surgical maggots which destroys important etiological agents of pyrogenic infections. J Bacteriol 30:253–267

    PubMed  CAS  Google Scholar 

  • Sneddon J, Lee JA, Soutar GN (2010) An exploration of ethical consumers’ response to ‘animal friendly’ apparel labelling. J Res Consumers 18:1–10

    Google Scholar 

  • Soares MO, Iglesias PC, Bland JM, Cullum N, Dumville JC, Nelson EA, Torgerson DJ, Worthy G on behalf of the VenUS II team (2009) Cost effectiveness analysis of larval therapy for leg ulcers. BMJ 338:b825. doi:10.1136/bmj.b825

  • Steenvoorde P (2008) Maggot debridement therapy Surgery, Thesis, 9 Jan 2008

    Google Scholar 

  • Steenvoorde P, Jacobi C, Wong C, Jukema G (2007) Maggot debridement therapy in necrotizing fasciitis. Methods Wounds 19:73–78

    Google Scholar 

  • Stevens J, Wall R (1997) The evolution of ectoparasitism in the genus Lucilia (Diptera: Calliphoridae). Int J Parasitol 27:51–59

    Article  PubMed  CAS  Google Scholar 

  • Susan SV (2008) In: Capinera JL (ed) Encyclopedia of entomology, Band 4, Maggot Therapy, page 2257

    Google Scholar 

  • Takac P, Majtan J, Novak P, Bohova J, Cambal M, Kozanek M (2010) Antimicrobial Factors – Lucilia sericata. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Tantawi TI, Gohar YM, Kotb MM, Beshara FM, El-Naggar MM (2007) Clinical and microbiological efficacy of MDT in the treatment of diabetic foot ulcers. J Wound Care 16:379–383

    PubMed  CAS  Google Scholar 

  • Tantawi TI, Williams KA, Villet MH (2010) An accidental but safe and effective use of Lucilia cuprina (Wiedemann) (Diptera: Calliphoridae) in maggot debridement therapy in Alexandria, Egypt. In: 8th international conference on biotherapy, Los Angeles, CA, USA, 12 Nov 2010

    Google Scholar 

  • Telford G, Brown AP, Seabra RAM, Horobin AJ, Rich A, English JSC, Pritchard DI (2010) Degradation of eschar from venous leg ulcers using a recombinant chymotrypsin from Lucilia sericata. Br J Dermatol. doi:10.1111/j.1365-2133.2010.09854.x

    Google Scholar 

  • Thomas S, Andrews AM, Hay NP, Bourgoise S (1999) The anti-microbial activity of maggot secretions: results of a preliminary study. J Tissue Viab 9(4):127–131

    CAS  Google Scholar 

  • US Army (1982) Special Forces Medical Handbook, ST 31-91B, United States Army Institute for Military Assistence, 1982-03-01. http://stealthsurvival.blogspot.com/2009/11/free-downloads-us-army-special-forces.html. Accessed 10 Oct 2010

  • van der Plas MJA, van der Does AM, Baldry M, Dogterom-Ballering HCM, van Gulpen C, van Dissel JT, Nibbering PH, Jukema GN (2007) Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microb Infect 9:507–514

    Article  Google Scholar 

  • van der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, van Dissel JT, Bloemberg GV, Nibbering PH (2008) Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother 61:117–122

    Article  PubMed  Google Scholar 

  • van der Plas MJA, Baldry M, van Dissel JT, Jukema GN, Nibbering PH (2009a) Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia 52:1962–1970

    Article  PubMed  Google Scholar 

  • van der Plas MJA, van Dissel JT, Peter H, Nibbering PH (2009b) Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PLoS One 4(11):e8071

    Article  PubMed  Google Scholar 

  • van der Plas MJA, Dambrot C, Dogterom-Ballering HC, Kruithof S, van Dissel JT, Nibbering PH (2010) Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J Antimicrob Chemother 65:917–923

    Article  PubMed  Google Scholar 

  • Vilcinskas A (2011) Insect biotechnology, biologically-inspired systems, vol 2, Part 1. From traditional maggot therapy to modern biosurgery. Springer, Heidelberg, pp 67–75. doi: 10.1007/978-90-481-9641-8_4; http://www.springerlink.com/content/978-90-481-9640-1/#section=801283&page=1&locus=4. Accessed 01 Dec 2010

  • Vistnes L, Lee R, Ksander A (1981) Proteolytic activity of blowfly fly larvae secretions in experimental burns. Surgery 90:835–841

    PubMed  CAS  Google Scholar 

  • Wayman J, Nirojogi V, Walker A, Sowinski A, Walker MA (2000) The cost effectiveness of larval therapy in venous ulcers. J Tissue Viab 10(3):91–94

    CAS  Google Scholar 

  • Welt-online (2010) Maden zerfressen Bettlägerigen bei lebendigem Leib. http://www.welt.de/vermischtes/weltgeschehen/article8703194/Maden-zerfressen-Bettlaegerigen-bei-lebendigem-Leib.html

  • Whitaker IS, Twine C, Whitaker MJ, Welck M, Brown CS, Shandall A (2007) Larval therapy from antiquity to the present day: mechanisms of action, clinical applications and future potential. Postgrad Med J 83(980):409–413. doi:10.1136/pgmj.2006.055905

    Article  PubMed  Google Scholar 

  • Wolff H, Hansson C (2005) Rearing fly larvae of Lucilia sericata for chronic ulcer treatment–an improved method. Acta Derm Venereol 85(2):126–131

    Article  PubMed  Google Scholar 

  • Wolff Echeverri MI, Rivera Álvarez C, Herrera Higuita SE, Wolff Idárraga JC, Escobar Franco MM, Lucilia eximia (2010) (Diptera: Calliphoridae), una nueva alternativa para la terapia larvaly reporte de casos en Colombia. IATREIA 23(2)

    Google Scholar 

  • Wollina U, Liebold K, Schmidt WD, Hartmann M, Fassler D (2002) Biosurgery supports granulation and debridement in chronic wounds – clinical data and remittance spectroscopy measurement. Int J Dermatol 41:635–639

    Article  PubMed  Google Scholar 

  • Zhen Z, Shouyu W, Yunpeng D, Jianing Z, Decheng L (2010) Fatty acid extracts from Lucilia sericata fly larvae promote murine cutaneous wound healing by angiogenic activity. Lipids Health Dis 9:24. doi:10.1186/1476-511X-9-24

    Article  Google Scholar 

  • Ziffren SE, Heist HE, May SC, Womack NA (1952) The secretion of collagenase by maggots and its implication. Ann Surg 1953:932–934

    Google Scholar 

  • Zumpt F (1965) Myiasis in man and animals in the old world. Butterworths, London, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Heuer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heuer, H., Heuer, L. (2011). Blowfly Strike and Maggot Therapy: From Parasitology to Medical Treatment. In: Mehlhorn, H. (eds) Nature Helps.... Parasitology Research Monographs, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19382-8_13

Download citation

Publish with us

Policies and ethics