Skip to main content

Continuum Models of Stimuli-responsive Gels

  • Chapter

Abstract

Immersed in a solution of small molecules and ions, a network of long-chain polymers may imbibe the solution and swell, resulting in a polymeric gel. Depending on the molecular structure of the polymers, the amount of swelling can be regulated by moisture, mechanical forces, ionic strength, electric field, pH value, and many other types of stimuli. Starting from the basic principles of non-equilibrium thermodynamics, this chapter formulates a field theory of the coupled large deformation and mass transportation in a neutral polymeric gel. The theory is then extended to study polyelectrolyte gels with charge-carrying networks by accounting for the electromechanical coupling and migration of solute ions. While the theoretical framework is adaptable to various types of material models, some representative ones are described through specific free-energy functions and kinetic laws. A specific material law for pH-sensitive gels—a special type of polyelectrolyte gels—is introduced as an example of incorporating chemical reactions in modeling stimuli-responsive gels. Finally, a simplified theory for the equilibrium but inhomogeneous swelling of a polymeric gel is deduced. The theory and the specific material models are illustrated through several examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Li Y, Tanaka T. Phase transitions of gels. Annu Rev Mater Sci, 22: 243–277, 1992.

    Article  ADS  Google Scholar 

  2. Osada Y, Gong J P. Soft and wet materials: polymer gels. Adv Mater, 10: 827–837, 1998.

    Article  Google Scholar 

  3. Melody A S, Mark E F. Interstitial flow and its effects in soft tissues. Annu Rev Biomed Eng, 9: 229–256, 2007.

    Article  Google Scholar 

  4. Zwieniecki M A, Melcher P J, Holbrook N M. Hydrogel control of xylem hydraulic resistance in plants. Science, 291: 1059–1062, 2001.

    Article  ADS  Google Scholar 

  5. Hodge W A, Fijian R S, Carlson K L, et al. Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci USA, 83: 2879–2883, 1986.

    Article  ADS  Google Scholar 

  6. Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chem Rev, 101: 1869–1879, 2001.

    Article  Google Scholar 

  7. Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov, 2: 347–360, 2003.

    Article  Google Scholar 

  8. Lee Y J, Braun P V. Tunable inverse opal hydrogel pH sensors. Adv Mater, 15: 563–566, 2003.

    Article  Google Scholar 

  9. Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors and microsensors. Sensors, 8: 561–581, 2008.

    Article  Google Scholar 

  10. Beebe D J, Moore J S, Bauer J M, et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 404: 588–590, 2000.

    Article  ADS  Google Scholar 

  11. Dong L, Agarwal A K, Beebe D J, et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature, 442: 551–554, 2006.

    Article  ADS  Google Scholar 

  12. Carpi F, Smela E. Biomedical Applications of Electroactive Polymer Actuators. Wiley, UK, 2009.

    Book  Google Scholar 

  13. Gibbs JW. On the equilibrium of heterogeneous substances. In: The Scientific Papers of J. Willard Gibbs. Longmans, Green, and Co., London, 1878.

    Google Scholar 

  14. Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks II: Swelling. J Chem Phys, 11: 521–526, 1943.

    Article  ADS  Google Scholar 

  15. Biot M A. General theory of three-dimensional consolidation. J Appl Phys, 12: 155–164, 1941.

    Article  ADS  MATH  Google Scholar 

  16. Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large deformation in polymeric gels. J. Mech. Phy. Solids, 56: 1779–1793, 2008.

    Article  MATH  Google Scholar 

  17. Hong W, Liu Z, Suo Z. Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. I J Solids Struct, 46: 3282–3289, 2009.

    Article  MATH  Google Scholar 

  18. Hong W, Zhao X, Suo Z. Large deformation and electrochemistry of polyelectrolyte gels. J. Mech. Phys. Solids, 58: 558–577, 2010.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Reese S, Govindjee S. A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct, 35: 3455–3482, 1998.

    Article  MATH  Google Scholar 

  20. Tanaka T, Hocker L, Benedek G B. Spectrum of light scattered from a viscoelastic gel. J Chern Phys, 59: 5151–5159, 1973.

    Article  ADS  Google Scholar 

  21. Flory P J. Principles of Polymer Chemistry. Cornell University Press, Ithaca, NY, 467–470, 1953.

    Google Scholar 

  22. Boyce M C, Arruda E M. Constitutive models of rubber elasticity: A review. Rubber Chem Technol, 73: 504–523, 2000.

    Article  Google Scholar 

  23. Marckmann G, Verron E. Comparison of hyperelastic models for rubberlike materials. Rubber Chem Technol, 79: 835–858, 2006.

    Article  Google Scholar 

  24. Horkay F, McKenna, G B. Polymer networks and gels. In: Mark, J.E. ed. Physical Properties of Polymers Handbook. Springer, New York, 497–523, 2007.

    Chapter  Google Scholar 

  25. Dorfmann A, Ogden R W. Nonlinear electroelasticity. Acta Mechanica, 174: 167–183, 2005.

    Article  MATH  Google Scholar 

  26. Ricka J, Tanaka T. Swelling of ionic gels: Quantitative performance of the Donnan theory. Macromolecules, 17: 2916–2921, 1984.

    Article  ADS  Google Scholar 

  27. Hooper H H, Baker J P, Blanch H W, et al. Swelling equilibria for positively ionized polyacrylamide hydrogels. Macromolecules, 23: 1096–1104, 1990.

    Article  ADS  Google Scholar 

  28. Brannon-Peppas L, Peppas N A. Equilibrium swelling behavior of pH-sensitive hydrogels. Chem Eng Sci, 46: 715–722, 1991.

    Article  Google Scholar 

  29. Baek S, Srinivasa A R. Modeling of the pH-sensitive behavior of an ionic gel in the presence of diffusion. I J Non-linear Mech, 39: 1301–1318, 2004.

    Article  MATH  Google Scholar 

  30. Zhao X H, Hong W, Suo Z G. Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys Rev B, 76: 134113, 2007.

    Article  ADS  Google Scholar 

  31. Suo Z G, Zhao X H, Greene W H. A nonlinear field theory of deformable dielectrics. J Mech Phys Solids, 56: 467–486, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  32. Lai W M, Hou J S, Mow V C. A triphasic theory for the swelling and deformation behaviors of articular-cartilage. J Biomech Eng-Trans ASME, 113: 245–258, 1991.

    Article  Google Scholar 

  33. De S K, Aluru N R, Johnson B, et al. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. J Microelectromech Sys, 11: 544–555, 2002.

    Article  Google Scholar 

  34. Li H, Luo R, Lam K Y. Modeling and simulation of deformation of hydrogels responding to electric stimulus. J Biomech, 40: 1091–1098, 2007.

    Article  Google Scholar 

  35. Nemat-Nasser S, Li J Y. Electromechanical response of ionic polymer-metal composites. J Appl Phys, 87: 3321–3331, 2000.

    Article  ADS  Google Scholar 

  36. Dolbow J, Fried E, Ji H. A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels. Comp Meth Appl Mech Eng, 194: 42–44, 2005.

    Article  MathSciNet  Google Scholar 

  37. Swaminathan N, Qu J, Sun Y. An electrochemomechanical theory of defects in ionic solids, I: Theory. Philos Mag, 87: 1705–1721, 2007.

    Article  Google Scholar 

  38. Hu Z B, Zhang X M, Li Y. Synthesis and application of modulated polymer gels. Science, 269: 525–527, 1995.

    Article  ADS  Google Scholar 

  39. Klein Y, Efrati E, Sharon E. Shaping of elastic sheets by prescription of non-Euclidean metrices. Science, 315: 1116–1120, 2007.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature, 452: 76–79, 2008.

    Article  ADS  Google Scholar 

  41. Treloar L R G. The swelling of cross-linked amorphous polymers under strain. Trans Faraday Soc, 46: 783–789, 1950.

    Article  Google Scholar 

  42. Kim S J, Spinks G M, Prosser S, et al. Surprising shrinkage of expanding gels under external load. Nature Mater, 5: 48–51, 2006.

    Article  ADS  Google Scholar 

  43. Marcombe R, Cai S, Hong W, et al. A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter, 6: 784–793, 2010.

    Article  ADS  Google Scholar 

  44. Hong W, Zhao X, Suo Z. Drying-induced bifurcation in a hydrogel-actuated nanostructure. J Appl Phys, 104: 084905, 2008.

    Article  ADS  Google Scholar 

  45. Wang X, Hong W. Surface interactions between two like-charged polyelectrolyte gels. Phys Rev E, 81: 041803, 2010.

    Article  ADS  Google Scholar 

  46. Hu Y, Zhao X, Vlassak J, et al. Using indentation to characterize the poroelasticity of gels. Appl Phys Lett, 96: 121904, 2010.

    Article  ADS  Google Scholar 

  47. Cai S, Bertoldi K, Wang H, et al. Osmotic collapse of a void in an elastomer: Breathing, buckling and creasing. Soft Matter, doi: 10.1039/c0sm00451k, 2010.

    Google Scholar 

  48. Sidorenko A, Krupenkin T, Taylor A, et al. Reversible switching of hydrogelactuated nanostructures into complex micropatterns. Science, 315:487–490.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, W. (2012). Continuum Models of Stimuli-responsive Gels. In: Advances in Soft Matter Mechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19373-6_6

Download citation

Publish with us

Policies and ethics