Skip to main content

Notes on Techniques

  • Chapter
  • First Online:

Abstract

In this introductory chapter, techniques for studying brain circuitry are discussed. Many features of the fibre connections of the human brain and spinal cord have been elucidated by the analysis of normal preparations stained by the Weigert-Pal and Klüver-Barrera techniques to demonstrate the myelin sheaths around axons of neurons (Sect. 3.2). Brain circuitry can be studied with these myelin-staining techniques, the classic Marchi and Nauta degeneration techniques and the more recent tract-tracing techniques (Sect. 3.3), with immunohistochemistry (Sect. 3.4) as well as with various electrophysiological techniques (Sect. 3.5). The development of modern non-invasive imaging techniques (Sect. 3.6) such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) has greatly improved our knowledge of the circuitry of the human central nervous system (CNS). New developments in MR imaging such as diffusion tensor imaging (DTI; “tractography”) allow the visualization of the major fibre connections in the human CNS. These various techniques are illustrated with examples on the corticospinal tract.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albrecht MH, Fernstrom RC (1959) A modified Nauta-Gygax method for human brain and spinal cord. Stain Technol 34:91–94

    PubMed  CAS  Google Scholar 

  • Amassian VE, Sakata H (1967) Functional organization of a cortical efferent system examined with focal depth stimulation in cats. J Neurophysiol 30:35–54

    Google Scholar 

  • Amassian VE, Quirck GJ, Stewart M (1990) A comparison of corticospinal activation by magnetic coil and electrical stimulation of monkey motor cortex. Electroencephalogr Clin Neurophysiol 77:390–401

    PubMed  CAS  Google Scholar 

  • Amassian VE, Eberle L, Maccabee P, Cracco RQ (1992) Modelling magnetic coil excitation of human cerebral cortex with a peripheral nerve immersed in a brain-shaped volume conductor: significance of fiber bending in excitation. Electroencephalogr Clin Neurophysiol 85:291–301

    PubMed  CAS  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikovsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397

    PubMed  CAS  Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    PubMed  CAS  Google Scholar 

  • Baumgartner C, Doppelhauer A, Deecke L, Barth DS, Zeithhofer J, Lindinger G, Sutherling WW (1991) Neuromagnetic investigation of somatotopy of human hand somatosensory cortex. Exp Brain Res 87:641–648

    PubMed  CAS  Google Scholar 

  • Beach TG, McGeer EG (1987) Tract-tracing with horseradish peroxidase in the postmortem human brain. Neurosci Lett 76:37–41

    PubMed  CAS  Google Scholar 

  • Beach TG, McGeer EG (1988) Retrograde filling of pyramidal neurons in postmortem human cerebral cortex using horseradish peroxidase. J Neurosci Methods 23:187–193

    PubMed  CAS  Google Scholar 

  • Beck E (1950) The origin, course, and termination of the prefrontopontine tract in the human brain. Brain 73:368–391

    PubMed  CAS  Google Scholar 

  • Berger H (1929) Ueber das Elektrenkephalogramm des Menschen. Arch Psychiatr Nervenkr 87:527–570

    Google Scholar 

  • Björklund A, Hökfelt T (eds) (1983) Methods in chemical neuroanatomy, vol 1, Handbook chemical neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Blessing WW, Ding Z-Q, Li Y-W, Gierobe ZJ, Wilson AJ, Hallsworth PG, Wesselingh SL (1994) Transneuronal labelling of CNS neurons with Herpes simplex virus. Prog Neurobiol 44:37–53

    PubMed  CAS  Google Scholar 

  • Bodian D (1936) A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat Rec 65:89–97

    Google Scholar 

  • Boucard CC (2006) Neuroimaging of visual field defects. University of Groningen, Thesis

    Google Scholar 

  • Boucard CC, Hernowo AT, Maguire RP, Jansonius NM, Roerdink JBTM, Hooymans JMM, Cornelissen FW (2009) Changes in cortical grey matter density associated with long-standing retinal visual field defects. Brain 132:1898–1906

    PubMed  PubMed Central  Google Scholar 

  • Braak H (1980) Architectonics of the human cerebral cortex, vol 4, Studies in brain function. Springer, Berlin

    Google Scholar 

  • Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1985) Golgi preparations as a tool in neuropathology with particular reference to investigations of the human telencephalic cortex. Prog Neurobiol 25:93–139

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1986) Nuclear configuration and neuronal types of the nucleus niger in the brain of the human adult. Hum Neurobiol 5:71–82

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 82:239–259

    CAS  Google Scholar 

  • Braak H, Griffing K, Braak E (1997) Neuroanatomy of Alzheimer’s disease. Alzheimer’s Res 3:235–247

    Google Scholar 

  • Braak H, Del Tredici K, Rüb K, de Vos RAI, Jansen Steur ENH, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211

    PubMed  Google Scholar 

  • Brodal A (1939) Experimentelle Untersuchungen über retrograde Zellveränderungen in der unteren Olive nach Läsionen des Kleinhirns. Z Ges Neurol Psychiatr 166:647–704

    Google Scholar 

  • Brodal A (1940) Modification of Gudden method for study of cerebral localization. Arch Neurol Psychiatr 43:46–58

    Google Scholar 

  • Brodal A (1981) Neurological anatomy in relation to clinical medicine, 3rd edn. Oxford University Press, New York

    Google Scholar 

  • Buhl EH, Lübke J (1988) Intracellular Lucifer Yellow injection in fixed brain slices combined with retrograde tracing, light and electron microscopy. Neuroscience 28:3–16

    Google Scholar 

  • Bürgel U, Mecklenburg I, Blohm U, Zilles K (1997) Histological visualization of long fiber tracts in the white matter of adult human brains. J Brain Res 38:397–404

    Google Scholar 

  • Bürgel U, Schormann T, Schleicher A, Zilles K (1999) Mapping of histologically identified long fiber tracts in human cerebral hemispheres to the MRI-volume of a reference brain: position and spatial variability of the optic radiation. Neuroimage 10:89–499

    Google Scholar 

  • Bürgel U, Amunts K, Hoemke L, Mohlberg H, Gilsbach JM, Zilles K (2006) White matter fiber tracts of the human brain: three-dimensional mapping at microscopic resolution, topography and intersubject variability. Neuroimage 29:1092–1105

    PubMed  Google Scholar 

  • Bürgel U, Mädler B, Honey CR, Thron A, Gilsbach J, Coenen VA (2009) Fiber tracking with distinct software tools results in a clear diversity in anatomical fiber tract portrayal. Cent Eur Neurosurg 70:27–35

    PubMed  Google Scholar 

  • Burke D, Pierrot-Deseilligny E (2010) Caveats when studying motor cortex excitability and the cortical control of movement using transcranial magnetic stimulation. Clin Neurophysiol 121:121–123

    PubMed  Google Scholar 

  • Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18:617–623

    PubMed  PubMed Central  CAS  Google Scholar 

  • Catani M (2006) Diffusion tensor magnetic resonance imaging tractography. Curr Opin Neurol 19:599–606

    PubMed  Google Scholar 

  • Catani M, ffytche DH (2005) The rises and falls of disconnection syndromes. Brain 128:2224–2239

    PubMed  Google Scholar 

  • Catani M, Jones DK, ffytche DH (2005) Perisylvian language networks of the human brain. Ann Neurol 57:8–16

    PubMed  Google Scholar 

  • Cheney PD (2002) Electrophysiological methods for mapping brain motor and sensory circuits. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 189–206

    Google Scholar 

  • Cheney PD, Fetz EE (1985) Comparable pattern of muscle facilitation evoked by individual corticomotoneuronal (CM) cells and by single intracortical microstimuli in primates: evidence for functional groups of CM cells. J Neurophysiol 53:786–804

    PubMed  CAS  Google Scholar 

  • Cherry SR, Phelps ME (2002) Imaging brain function with positron emission tomography. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 485–511

    Google Scholar 

  • Chiappa KH (1997) Evoked potentials in clinical medicine, 2nd edn. Raven, New York

    Google Scholar 

  • Ciccarelli O, Toosy AT, Parker GJM, Wheeler-Kingshott CAM, Barker GJ, Miller DH, Thompson AJ (2003) Diffusion tractography based group mapping of major white-matter pathways in the human brain. Neuroimage 19:1545–1555

    PubMed  CAS  Google Scholar 

  • Ciccarelli O, Catani M, Johansen-Berg H, Clark C, Thompson AJ (2008) Diffusion-based tractography in neurological disorders: concept, applications and future developments. Lancet Neurol 7:715–727

    PubMed  Google Scholar 

  • Clarke E, O’Malley CD (1996) The human brain and spinal cord, 2nd edn. Norman, San Francisco

    Google Scholar 

  • Cohen D (1968) Magnetoencephalography: detection of magnetic fields produced by α rhythm currents. Science 161:778–786

    Google Scholar 

  • Coleman M (2005) Axon degeneration mechanisms: commonality and diversity. Nat Rev Neurosci 6:889–898

    PubMed  CAS  Google Scholar 

  • Cowan WM (1970) Anterograde and retrograde transneuronal degeneration in the central and peripheral nervous system. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin, pp 217–251

    Google Scholar 

  • Cowan WM, Gottlieb DL, Hendrickson AE, Price JL, Woolsey TL (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51

    PubMed  CAS  Google Scholar 

  • Cragg BG (1970) What is the signal for chromatolysis? Brain Res 23:1–21

    PubMed  CAS  Google Scholar 

  • Cuello AC (ed) (1983) Immunohistochemistry, vol 3, IBRO handbook series: methods in the neurosciences. Wiley, Chichester

    Google Scholar 

  • Cuello AC (ed) (1993) Immunohistochemistry II, vol 14, IBRO handbook series: methods in the neurosciences. Wiley, Chichester

    Google Scholar 

  • Cummings TJ, Chugani DC, Shugani HT (1995) Positron emission tomography in pediatric epilepsy. Neurosurg Clin 6:465–472

    CAS  Google Scholar 

  • Danek A, Bauer M, Fries W (1990) Tracing of neuronal connections in the human brain by magnetic resonance imaging in vivo. Eur J Neurosci 2:112–115

    PubMed  Google Scholar 

  • Darvas F, Pantaris D, Kucukaltun-Yildirim E, Leahy RM (2004) Mapping human brain function with MEG and EEG: methods and validation. Neuroimage 23(Suppl 1):S289–S299

    PubMed  Google Scholar 

  • Dauguet J, Peled S, Berezowskii V, Delzescaux T, Warfield SK, Born R, Westin C-F (2007) Comparison of fiber tracts derived from in-vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37:530–538

    PubMed  Google Scholar 

  • Dawson GD (1951) A summation technique for detecting small signals in a large irregular background. J Physiol (Lond) 115:2P–3P

    CAS  Google Scholar 

  • Day BL, Dresslet D, Maertens de Noordhout A, Marsden CD, Nakashima K, Rothwell JC, Thompson PD (1989a) Electric and magnetic stimulation of human motor cortex: surface EMG and single motor unit responses. J Physiol (Lond) 412:449–473

    CAS  Google Scholar 

  • Day BL, Rothwell JC, Thompson PD, Maertens de Noordhout A, Nakashima K, Shannon K, Marsden CD (1989b) Delay in the execution of voluntary movement by electrical or magnetic brain stimulation in man. Brain 112:649–663

    PubMed  Google Scholar 

  • Devous MD (2002) SPECT functional brain imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 513–536

    Google Scholar 

  • Dumitru D, Amato AA, Zwarts M (2002) Electrodiagnostic medicine, 2nd edn. Hanley & Belfus, Philadelphia, PA

    Google Scholar 

  • Edgley SA, Eyre JA, Lemon RN, Miller S (1990) Excitation of the corticospinal tract by electromagnetic and electrical stimulation of the scalp in the macaque monkey. J Physiol (Lond) 425:301–320

    CAS  Google Scholar 

  • Edwards MJ, Tatelli P, Rothwell JC (2008) Clinical applications of transcranial magnetic stimulation in patients with movement disorders. Lancet Neurol 7:827–840

    PubMed  Google Scholar 

  • Einstein G (1988) Intracellular injection of Lucifer Yellow into cortical neurons in lightly fixed sections and its application to human autopsy material. J Neurosci Methods 26:95–103

    PubMed  CAS  Google Scholar 

  • Emerson RG, Seval M, Pedley TA (1984) Somatosensory evoked potentials following median nerve stimulation. Brain 107:169–182

    PubMed  Google Scholar 

  • Erlanger J, Gasser HS (1937) Electrical signs of nervous activity. University of Pennsylvania Press, Philadelphia, PA

    Google Scholar 

  • Ferrier D (1876) The functions of the brain. Smith, Elder and Company, London

    Google Scholar 

  • Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44:751–772

    PubMed  CAS  Google Scholar 

  • Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

    PubMed  CAS  Google Scholar 

  • Flechsig P (1901) Development (myelogenesis) localisation of the cerebral cortex in the human subject. Lancet 2:1027–1029

    Google Scholar 

  • Flechsig P (1920) Anatomie des menschlichen Gehirns und Rücken­marks auf myelogenetische Grundlage. Thieme, Leipzig

    Google Scholar 

  • Frackowiak RSJ, Friston KJ, Frith CD, Dolan RJ, Price CJ, Zeki S, Ashburner J, Penny W (eds) (2003) Human brain function, 2nd edn. Amsterdam, Elsevier

    Google Scholar 

  • Franssen H, Stegeman DF, Moleman J, Schoobaar RP (1992) Dipole modelling of median nerve SEPs in normal subjects and patients with small subcortical infarcts. Electroencephalogr Clin Neuro­physiol 84:401–417

    PubMed  CAS  Google Scholar 

  • Fritsch G, Hitzig E (1870) Ueber die elektrische Erregbarkeit des Grosshirns. Arch Anat Physiol Wiss Med 37:300–322

    Google Scholar 

  • Geyer S (2004) The microstructural border between the motor and the cognitive domain in the human cerebral cortex. Adv Anat Embryol Cell Biol 17:1–92

    Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, SchormannT BU et al (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807

    PubMed  CAS  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: cytoarchitecture and regional distribution of receptor-binding sites. Neuroimage 6:27–45

    PubMed  CAS  Google Scholar 

  • Gimlich RL, Braun J (1985) Improved fluorescent compounds for tracing cell lineage. Dev Biol 109:509–514

    PubMed  CAS  Google Scholar 

  • Glees P (1946) Terminal degeneration within the central nervous system as studied by a new silver method. J Neuropathol Exp Neurol 5:54–59

    PubMed  CAS  Google Scholar 

  • Glees P, Le Gros Clark WE (1941) The termination of optic fibers in the lateral geniculate body of the monkey. J Anat (Lond) 75:295–308

    CAS  Google Scholar 

  • Glover JC, Petursdottir G, Jansen KS (1986) Fluorescent dextran-amines used as axonal tracers in the nervous system of the chicken embryo. J Neurosci Methods 18:243–254

    PubMed  CAS  Google Scholar 

  • Godement P, Vanselow J, Thanos S, Bonhoeffer F (1987) A study in developing visual systems with a new method of staining neurons and their processes in fixed tissue. Development 101:697–713

    PubMed  CAS  Google Scholar 

  • Golgi C (1873) Sulla struttura delle sostanza grigia dell cervello. Gazz Med Ital Lombardia 33:244–246

    Google Scholar 

  • Golgi C (1875) Sui gliomi dell cervello. Riv Sper Freniatria Med Leg 1:66–78

    Google Scholar 

  • Graf W, Gerrits N, Yatim-Dhiba N, Ugolini G (2002) Mapping the oculomotor system: the power of transneuronal labeling with rabies virus. Eur J Neurosci 15:1557–1562

    PubMed  Google Scholar 

  • Grafe MR, Leonard CM (1980) Successful silver impregnation of degenerating axons after long survivals in the human brain. J Neuro­pathol Exp Neurol 39:555–574

    PubMed  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    PubMed  PubMed Central  CAS  Google Scholar 

  • Griffin JW, George EB, Hsieh S-T, Glass JD (1995) Axonal degeneration and disorders of the axonal cytoskeleton. In: Waxman SG, Kocsis JD, Sytys PK (eds) The axon: structure, function and pathophysiology. Oxford University Press, New York, pp 375–390

    Google Scholar 

  • Guye M, Parker GJM, Symms M, Boulby P, Wheeler-Kingshott CAM, Salek-Haddadi A et al (2003) Combined functional MRI and ­tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19:1349–1360

    PubMed  Google Scholar 

  • Haddock JN, Berlin L (1950) Transsynaptic degeneration in the visual system. Arch Neurol Psychiatr 64:66–73

    CAS  Google Scholar 

  • Hämäläinen M, Hari R (2002) Magnetoencephalographic characterization of dynamic brain activation: basic principles and methods of data collection and source analysis. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 227–253

    Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumentation, and application to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Google Scholar 

  • Hammerschlag R, Cyr JL, Brady ST (1994) Axonal transport and the neuronal cytoskeleton. In: Siegel GL, Agranoff BW, Albers RW, Molinoff PB (eds) Basic neurochemistry. Raven, New York, pp 545–571

    Google Scholar 

  • Hari R (1993) Magnetoencephalography as a tool of clinical neurophysiology. In: Niedermeyer E, Lopes da Silva F (eds) Electroencephalography. Basic principles, clinical applications and related fields. Williams & Wilkins, Baltimore, MD, pp 1035–1061

    Google Scholar 

  • Hari R, Karhu J, Hämäläinen M, Mkuutila J, Salonen O, Sams M, Vilkman V (1993) Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur J Neurosci 5:724–734

    PubMed  CAS  Google Scholar 

  • Harrison PJ, Hultborn H, Jankowska E, Katz R, Storai B, Zytnicki D (1984) Labelling of interneurones by retrograde transsynaptic transport of horseradish peroxidase from motoneurones in rats and cats. Neurosci Lett 45:15–19

    PubMed  CAS  Google Scholar 

  • Hendrickson AE (1969) Electron microscopic radioautography: identification of origin of synaptic terminals in normal nervous tissue. Science 165:194–196

    PubMed  CAS  Google Scholar 

  • Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6:201–214

    PubMed  CAS  Google Scholar 

  • Holt DJ, Graybiel AM, Saper CB (1997) Neurochemical architecture of the human striatum. J Comp Neurol 384:1–25

    PubMed  CAS  Google Scholar 

  • Honig MC, Hume RI (1986) Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. J Cell Biol 103:171–187

    PubMed  CAS  Google Scholar 

  • Hoover JE, Strick PL (1999) The organization of cerebellar and basal ganglia outputs to primary motor cortex as revealed by retrograde transneuronal transport of herpes simplex virus type 1. J Neurosci 19:1446–1463

    PubMed  CAS  Google Scholar 

  • Horikawa K, Armstrong WE (1988) A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates. J Neurosci Methods 25:1–11

    PubMed  CAS  Google Scholar 

  • Houlden DA, Schwartz ML, Tator CH, Ashby P, MacKay WA (1999) Spinal cord-evoked potentials and muscle responses evoked by transcranial magnetic stimulation in 10 awake human subjects. J Neurosci 19:1855–1862

    PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques. A comparison between ABC and unlabelled antibody (PAP) procedures. J Histo­chem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  • Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    PubMed  CAS  Google Scholar 

  • Johansen-Berg H, Behrens TEJ (eds) (2009) Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Elsevier, Amsterdam

    Google Scholar 

  • Kamada K, Sawamura Y, Takeuchi F, Kawaguchi H, Kuriki S, Todo T et al (2005) Functional identification of the primary motor area by corticospinal tractography. Neurosurgery 56(Suppl 1):98–109

    PubMed  Google Scholar 

  • Karachi C, François C, Parain K, Bardinet E, Tandé D, Hirsch E, Yelnik J (2002) Three-dimensional cartography of functional territories in the human striatopallidal complex by using calbindin immunoreactivity. J Comp Neurol 450:122–134

    PubMed  Google Scholar 

  • Kelly RM, Strick PL (2000) Rabies as a transneuronal tracer of circuits in the central nervous system. J Neurosci 103:63–71

    CAS  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

  • Kelly RM, Strick PL (2004) Macro-architecture of basal ganglia loops with the cerebral cortex: use of rabies virus to reveal multisynaptic circuits. Prog Brain Res 143:449–459

    PubMed  Google Scholar 

  • Kitai ST, Bishop BA (1981) Intracellular staining of neurons. In: Heimer L, RoBards MJ (eds) Neuroanatomical tract-tracing methods. Plenum, New York, pp 263–277

    Google Scholar 

  • Kleine BU, Schelhaas HJ, van Elswijk G, de Rijk MC, Stegeman DF, Zwarts MJ (2009) Prospective, blind study of the triple stimulation technique in the diagnosis of ALS. Amyotroph Lateral Scler 27:1–9

    Google Scholar 

  • Klingler J (1935) Erleichterung der makroskopischen Präparation des Gehirns durch den Gefrierprozess. Schweiz Arch Neurol Psychiatr 36:247–256

    Google Scholar 

  • Klingler J, Gloor P (1960) The connections of the amygdala and of the anterior temporal cortex in the human brain. J Comp Neurol 115:333–369

    PubMed  CAS  Google Scholar 

  • Klüver H, Barrera E (1953) A method for the combined staining of cells and fibers in the nervous system. J Neuropathol Exp Neurol 12:400–403

    PubMed  Google Scholar 

  • Kristensson K, Olsson Y (1971) Retrograde axonal transport of protein. Brain Res 29:363–365

    PubMed  CAS  Google Scholar 

  • Kupfer C (1965) The distribution of cell size in the lateral geniculate nucleus of man following transneuronal cell atrophy. J Neuropathol Exp Neurol 24:653–661

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Ugolini G (1990) Viruses as transneuronal tracers. Trends Neurosci 13:71–75

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM, Bentivoglio M, Catsman-Berrevoets CE, Bharos TB (1980) Double retrograde neuronal labeling through diverging axon collaterals using two fluorescent tracers with the same excitation wavelength which label different features of the cell. Exp Brain Res 40:383–392

    PubMed  CAS  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskopff RM, Poncelet BP et al (1991) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679

    Google Scholar 

  • Lasek RJ, Katz MJ (1987) Mechanisms at the axon tip regulate metabolic processes critical to axonal elongation. Prog Brain Res 71:49–60

    PubMed  CAS  Google Scholar 

  • Lasek RJ, Joseph BS, Whitlock DG (1968) Evaluation of a radioautographic neuroanatomical tracing method. Brain Res 8:319–336

    PubMed  CAS  Google Scholar 

  • LaVail JH, LaVail MM (1972) Retrograde axonal transport in the central nervous system. Science 176:1415–1417

    Google Scholar 

  • Le Bihan D (1995) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386

    PubMed  Google Scholar 

  • Le Bihan D, Breton E (1985) Imagerie de diffusion in vivo par résonance magnétique nucléaire. C R Acad Sci Paris 301:1109–1112

    Google Scholar 

  • Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546

    PubMed  Google Scholar 

  • Le Gros Clark WE, Penman GG (1934) The projection of the retina in the lateral geniculate body. Proc Roy Soc B 114:292–313

    Google Scholar 

  • Lieberman AR (1971) The axon reaction: a review of the principal features of perikaryal responses to axon injury. Int Rev Neurobiol 14:49–124

    PubMed  CAS  Google Scholar 

  • Lowe J, Cox G (1990) Neuropathological techniques. In: Bancroft JD, Stevens A, Turner DR (eds) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh, pp 343–378

    Google Scholar 

  • Loyez M (1920) Coloration des fibres nerveuses par le méthode à l’hématoxyline au fèr après inclusion à la celloidine. C R Séanc Soc Biol Fil 62:511

    Google Scholar 

  • Lubínska L (1964) Axoplasmic streaming in regenerating and in normal nerve fibres. Prog Brain Res 13:1–66

    PubMed  Google Scholar 

  • Ludwig E, Klingler J (1956) Atlas Cerebri Humani. Karger, Basel

    Google Scholar 

  • Luksch H, Walkowiak W, Muñoz A, ten Donkelaar HJ (1996) The use of in vitro preparations of the isolated amphibian CNS in neuroanatomy and neurophysiology. J Neurosci Methods 70:91–108

    PubMed  CAS  Google Scholar 

  • Luo L, O’Leary DDM (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156

    PubMed  CAS  Google Scholar 

  • Magistris MR, Rösler KM, Truffert A, Myers JP (1998) Transcranial stimulation excites virtually all motor neurons supplying the target muscle. A demonstration and a method improving the study of motor evoked potentials. Brain 121:437–450

    Google Scholar 

  • Magistris MR, Rösler KM, Truffert A, Landis T, Hess CW (1999) A clinical study of motor evoked potentials using a triple stimulation technique. Brain 122:265–279

    Google Scholar 

  • Mäkelä JP, Kirveskari E, Seppä M, Hämäläinen M, Forss N, Avikainen S et al (2001) Three-dimensional integration of brain anatomy and function to facilitate intraoperative navigation around the sensorimotor strip. Hum Brain Mapp 12:180–192

    PubMed  Google Scholar 

  • Mäkelä JP, Forss N, Jääskeläinen J, Kirveskari E, Korvenoja A, Paetau R (2006) Magnetoencephalography in neurosurgery. Neurosurgery 59:493–511

    PubMed  Google Scholar 

  • Makris N, Worth AJ, Sorensen AG, Papadimitriou GM, Wu O, Reese TG et al (1997) Morphometry of in vivo human white matter associative pathways with diffusion weighted magnetic resonance imaging. Ann Neurol 42:951–962

    PubMed  CAS  Google Scholar 

  • Mandeville JB, Rosen BR (2002) Functional MRI. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 315–349

    Google Scholar 

  • Marani E, Schoen JHR (2005) A reappraisal of the ascending systems in man, with emphasis on the medial lemniscus. Adv Anat Embryol Cell Biol 179:1–76

    PubMed  CAS  Google Scholar 

  • Marchi V, Algeri G (1885) Sulle degenerazioni discendenti consecutive a lesioni sperimentale in diverse zone della corteccia cerebrale. Riv Sper Freniatria Med Leg 11:492–494

    Google Scholar 

  • Marinesco G (1898) Veränderungen der Nervencentren nach Ausreissung der Nerven mit einigen Erwägungen betreffs ihrer Natur. Neurol Zbl 17:882–890

    Google Scholar 

  • Masuda N (1914) Ueber das Brückengrau des Menschen (Griseum pontis) und dessen näheren Beziehungen zum Kleinhirn und Großhirn. Arb Hirnanat Inst Zürich 9:1–249

    Google Scholar 

  • Matthews MR, Cowan WM, Powell TPS (1960) Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J Anat (Lond) 94:145–169

    CAS  Google Scholar 

  • Melhem ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PC (2002) Diffusion tensor MR imaging of the brain and white matter tractography. AJR Am J Roentgenol 178:3–16

    PubMed  Google Scholar 

  • Merton PA, Morton HB (1980) Stimulation of the cerebral cortex in the intact human subject. Nature 285:227

    PubMed  CAS  Google Scholar 

  • Mesulam M-M (1979) Tracing neural connections of human brain with selective silver impregnation. Observations on geniculocalcarine, spinothalamic, and entorhinal pathways. Arch Neurol 36:814–818

    PubMed  CAS  Google Scholar 

  • Miklossy J, Van der Loos H (1991) The long-distance effects of brain lesions: visualization of myelination pathways in the human brain using polarizing and fluorescence microscopy. J Neuropathol Exp Neurol 50:1–15

    PubMed  CAS  Google Scholar 

  • Miklossy J, Clarke S, Van der Loos H (1991) The long-distance effects of brain lesions: visualization of axonal pathways and their terminations in the human brain by the Nauta method. J Neuropathol Exp Neurol 50:595–614

    PubMed  CAS  Google Scholar 

  • Mills KR (1991) Magnetic brain stimulation: a tool to explore the action of the motor cortex on single human spinal motoneurones. Trends Neurosci 14:401–405

    PubMed  CAS  Google Scholar 

  • Morel A (2007) Stereotactic atlas of the human thalamus and basal ganglia. Informa, New York, London

    Google Scholar 

  • Morel A, Magnin M, Jeanmonod D (1997) Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol 387:588–630

    PubMed  CAS  Google Scholar 

  • Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the brain basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443:86–103

    PubMed  CAS  Google Scholar 

  • Mori S (2002) Principles, methods, and applications of diffusion tensor imaging. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 379–397

    Google Scholar 

  • Mori S, Crain BJ, Chacko VP, van Zijl PC (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45:265–269

    PubMed  CAS  Google Scholar 

  • Mori S, Wakana S, Nagae-Poetscher LM, van Zijl PC (2005) MRI atlas of human white matter. Elsevier, Amsterdam

    Google Scholar 

  • Mufson EJ, Brady DR, Kordower JH (1990) Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol Aging 11:649–653

    PubMed  CAS  Google Scholar 

  • Nakamura A, Yamada T, Goto A, Kato T, Ito K, Abe Y, Kachi T, Kakigi R (1998) Somatosensory homunculus as drawn by MEG. Neuroimage 7:377–386

    PubMed  CAS  Google Scholar 

  • Nance DM, Burns J (1990) Fluorescent dextrans as sensitive anterograde neuroanatomical tracers: applications and pitfalls. Brain Res Bull 25:139–145

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1990) The corticospinal tract in man. Course and location of fibres at different segmental tracts. Brain 113:303–324

    PubMed  Google Scholar 

  • Nathan PW, Smith MC, Deacon P (1996) Vestibulospinal, reticulospinal and descending propriospinal nerve fibres in man. Brain 119:1809–1833

    PubMed  Google Scholar 

  • Nauta WJH (1950) Ueber die sogenannte terminale Degeneration im Zentralnervensystem und ihre Darstellung durch Silberimprägnation. Schweiz Arch Neurol Psychiatr 66:353–376

    PubMed  CAS  Google Scholar 

  • Nauta WJH, Gygax PA (1951) Silver impregnation of degenerating axon terminals in the central nervous system. 1. Technic. 2. Chemical notes. Stain Technol 26:5–11

    PubMed  CAS  Google Scholar 

  • Nauta WJH, Gygax PA (1954) Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol 29:91–93

    PubMed  CAS  Google Scholar 

  • Newton JM, Ward NS, Parker GJM, Deichmann R, Alexander DC, Friston KJ, Frackowiak RSJ (2006) Non-invasive mapping of corticofugal fibres from multiple motor areas – relevance to stroke recovery. Brain 129:1844–1858

    PubMed  PubMed Central  Google Scholar 

  • Nissl F (1885) Ueber die Untersuchungsmethoden der Grosshirnrinde. Neurol Zbl 4:500–501

    Google Scholar 

  • Nissl F (1892) Ueber die Veränderungen der Ganglienzellen am Facialiskern des Kaninchens nach Ausreissung der Nerven. Allg Z Psychiatr 48:197–198

    Google Scholar 

  • Nissl F (1894) Ueber die sogenannten Granula der Nervenzellen. Neurol Zbl 13:676–688

    Google Scholar 

  • Ochs S, Burger E (1958) Movement of substance proximo-distally in nerve axons as studied with spinal cord injections of radioactive phosphorus. Am J Physiol 194:499–506

    PubMed  CAS  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ogawa S, Tank D, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89:5951–5955

    PubMed  PubMed Central  CAS  Google Scholar 

  • Op de Coul AAW (1970) De Atrofie van de Kleine Handspieren. Thesis, University of Amsterdam (in Dutch)

    Google Scholar 

  • Pal J (1887) Ein Beitrag zur Nervenfärbetechnik. Z Wiss Mikrosk 4:92–96

    Google Scholar 

  • Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Sarkari S, Pataraia E et al (2004) Magnetoencephalography: a noninvasive alternative to the Wada procedure. J Neurosurg 100:867–876

    PubMed  Google Scholar 

  • Pascual-Leone A, Walsh V (2002) Transcranial magnetic stimulation. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 255–290

    Google Scholar 

  • Pascual-Leone A, Bartres-Faz D, Keenan JP (1999) Transcranial magnetic stimulation: studying the brain-behaviour relationship by induction of virtual lesions. Phil Trans R Soc Lond B 354:1229–1238

    CAS  Google Scholar 

  • Pauling L, Coryell CD (1936) The magnetic properties and structure of hemoglobin, oxyhemoglobin and carbonmonoxyhemoglobin. Proc Natl Acad Sci USA 22:210–216

    PubMed  PubMed Central  CAS  Google Scholar 

  • Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix L, Virta A, Basser P (2001) Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage 13:1174–1185

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Burke D (2005) The circuitry of the human spinal cord. Cambridge University Press, Cambridge, Its role in motor control and movement disorders

    Google Scholar 

  • Pizzella V, Romani G (1990) Principles of magnetoencephalography. In: Sato S (ed) Magnetoencephalography. Raven, New York, pp 1–9

    Google Scholar 

  • Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, Zilles K (2001) Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. Brain 124:2232–2258

    PubMed  CAS  Google Scholar 

  • Rademacher J, Bürgel U, Zilles K (2002) Stereotaxic localization, intersubject variability, and interhemispheric differences of the human auditory thalamocortical system. Neuroimage 17:142–160

    PubMed  CAS  Google Scholar 

  • Ramón y Cajal S (1928) Degeneration and regeneration of the nervous system (trans and ed: May). Oxford University Press, London (extended reprint edited by J De Felipe and EG Jones 1991 Oxford University Press, New York)

    Google Scholar 

  • Ramón-Moliner E (1970) The Golgi-Cox technique. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Springer, Berlin, pp 32–55

    Google Scholar 

  • Rothwell JC (1997) Techniques and mechanics of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    PubMed  CAS  Google Scholar 

  • Rothwell JC, Thompson PD, Day BL, Boyd S, Marsden CD (1991) Stimulation of the human motor cortex through the scalp. Exp Physiol 76:159–200

    PubMed  CAS  Google Scholar 

  • Roy S, Zhang B, Lee VM-Y, Trojanowski JQ (2005) Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol (Berl) 109:5–13

    Google Scholar 

  • Ruda M, Coulter JD (1982) Axonal and transneuronal transport of wheat germ agglutinin demonstrated by immunocytochemistry. Brain Research 249:237–246

    PubMed  CAS  Google Scholar 

  • Sack AT (2006) Transcranial magnetic stimulation, causal structure-function mapping and networks of functional relevance. Curr Opin Neurobiol 16:593–599

    PubMed  CAS  Google Scholar 

  • Saper CB, Wainer BH, German DC (1987) Axonal and transneuronal transport in the transmission of neurological disease: potential role in system degenerations, including Alzheimer’s disease. Neuro­science 23:389–398

    PubMed  CAS  Google Scholar 

  • Sawchenko PE, Gerfen CR (1985) Plant lectins and bacterial toxins as tools for tracing neuronal connections. Trends Neurosci 8:3780384

    Google Scholar 

  • Schmahmann JD, Pandya DN (2006) Fiber pathways of the brain. Oxford University Press, New York

    Google Scholar 

  • Schmahmann JD, Nitsch RM, Pandya DN (1992) The mysterious relocation of the bundle of Türck. Brain 115:1911–1924

    PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN, Wang R, Dai G, D’Arceuil HE, de Crespigny AJ, Wedeen VJ (2007) Association fibre pathways in the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain 130:630–653

    PubMed  Google Scholar 

  • Schmued L, Kyriakidis K, Heimer L (1990) In vivo anterograde and retrograde axonal transport of the fluorescent rhodamine-dextran-amine, fluoro-ruby, within the CNS. Brain Res 526:127–134

    PubMed  CAS  Google Scholar 

  • Schoen JHR (1969) The corticofugal projection on the brain stem and spinal cord in man. Psychiatr Neurol Neurochir 72:121–128

    PubMed  CAS  Google Scholar 

  • Schwab ME, Thoenen H (1976) Electron microscopic evidence for a transsynaptic migration of tetanus toxin in spinal cord motoneurons: an autoradiographic and morphometric study. Brain Res 105:213–227

    PubMed  CAS  Google Scholar 

  • Sherrington CS (1906) The integrative action of the nervous system. Yale University Press, New Haven, CT

    Google Scholar 

  • Smith MC (1951) The use of Marchi staining in the later stages of human tract degeneration. J Neurol Neurosurg Psychiatry 14:222–225

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith MC (1956a) Observations on the extended use of the Marchi method. J Neurol Neurosurg Psychiatry 19:69–73

    Google Scholar 

  • Smith MC (1956b) The recognition and prevention of artefacts of the Marchi method. J Neurol Neurosurg Psychiatry 19:74–83

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith MC, Strich SJ, Sharp P (1956) The value of the Marchi method for staining tissue stored in formalin for prolonged periods. J Neurol Neurosurg Psychiatry 19:62–64

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spehlmann R (1985) Evoked potential primer. Butterworth, Boston, MA

    Google Scholar 

  • Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159

    PubMed  CAS  Google Scholar 

  • Srinivasan R, Winter WR, Pl N (2006) Source analysis of EEG oscillations using high-resolution EEG and MEG. Prog Brain Res 159:29–42

    PubMed  PubMed Central  Google Scholar 

  • Stegeman DF, Dumitru D, King KC, Roeleveld K (1997) Near- and far-fields: source characteristics and the conducting medium in neurophysiology. J Clin Neurophysiol 14:429–442

    PubMed  CAS  Google Scholar 

  • Steinbusch HWM (ed) (1987) Monoaminergic neurons: light microscopy and ultrastructure, vol 10, IBRO handbook series: methods in the neurosciences. Wiley, Chichester

    Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  • Stewart WW (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell 14:741–759

    PubMed  CAS  Google Scholar 

  • Strack AM, Loewy AD (1990) Pseudorabies virus: a highly specific transneuronal cell body marker in the sympathetic nervous system. J Neurosci 10:2139–2147

    PubMed  CAS  Google Scholar 

  • Su JH, Deng G, Cotman CW (1997) Transneuronal degeneration in the spread of Alzheimer’s disease pathology: immunohistochemical evidence for the transmission of tau hyperphosphorylation. Neurobiol Dis 4:365–375

    PubMed  CAS  Google Scholar 

  • Tamraz JC, Comair YG (2000) Atlas of regional anatomy of the brain using MRI: with functional correlations. Springer, Berlin

    Google Scholar 

  • Thompson PD, Day BL, Crockard HA, Calder I, Murray NMF, Rothwell JC (1991) Intra-operative recording of motor tract potentials at the cervico-medullary junction following scalp electrical and magnetic stimulation by the motor cortex. J Neurol Neurosurg Psychiatry 54:618–623

    PubMed  PubMed Central  CAS  Google Scholar 

  • Trojanowski JQ, Gonatas JO, Gonatas NK (1982) Horseradish peroxidase (HRP) conjugates of cholera toxin and lectins are more sensitive retrogradely transported markers than free HRP. Brain Res 231:33–50

    PubMed  CAS  Google Scholar 

  • Tsai J, Grutzendler J, Duff K, Gan WB (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat Neurosci 7:1181–1183

    PubMed  CAS  Google Scholar 

  • Türck L (1849) Mikroskopischer Befund des Rückenmarkes eines paraplegischen Weibes. Z Kais Kön Ges Ärzte Wien 5:173–176

    Google Scholar 

  • Türe U, Yaşargil MG, Pait TG (1997) Is there a superior occipito­frontal fasciculus? A microsurgical anatomic study. Neurosurgery 40:1226–1232

    PubMed  Google Scholar 

  • Türe U, Yaşargil DC, Al-Mefty O, Yaşargil MG (1999) Topographic anatomy of the insular region. J Neurosurg 90:720–733

    PubMed  Google Scholar 

  • Türe U, Yaşargil MG, Friedman AH, Al-Mefty O (2000) Fiber dissection technique: lateral aspect of the brain. Neurosurgery 47:417–427

    PubMed  Google Scholar 

  • Ugolini G, Kuypers HGJM, Simmons A (1987) Retrograde transneuronal transfer of Herpes simplex virus type 1 (HSV1) from motoneurons. Brain Res 422:242–256

    PubMed  CAS  Google Scholar 

  • Usunoff KG, Marani E, Schoen JHR (1997) The trigeminal system in man. Adv Anat Embryol Cell Biol 136:1–126

    Google Scholar 

  • Valverde F (1970) The Golgi method. A tool for comparative structural analyses. In: Nauta WJH, Ebbesson SOE (eds) Contemporary research methods in neuroanatomy. Berlin, Springer, pp 12–31

    Google Scholar 

  • Van Buren JM (1963a) The retinal ganglion cell layer. Thomas, Springfield, IL

    Google Scholar 

  • Van Buren JM (1963b) Transsynaptic retrograde degeneration in the visual system of primates. J Neurol Neurosurg Psychiatry 26:402–409

    PubMed Central  Google Scholar 

  • van Domburg PHMF, ten Donkelaar HJ (1991) The human substantia nigra and ventral tegmental area. A neuroanatomical study with notes on aging diseases. Adv Anat Embryol Cell Biol 121:1–132

    PubMed  Google Scholar 

  • Vargas ME, Barres BA (2007) Why is Wallerian degeneration in the CNS so slow? Annu Rev Neurosci 30:153–179

    PubMed  CAS  Google Scholar 

  • Veenman CL, Reiner A, Honig MC (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41:239–244

    PubMed  CAS  Google Scholar 

  • von Gudden B (1870) Experimentaluntersuchungen über das peripherische und centrale Nervensystem. Arch Psychiatr 2:693–724

    Google Scholar 

  • Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic, San Diego, CA, pp 321–386

    Google Scholar 

  • Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos Trans R Soc Lond B Biol Sci 140:423–469

    Google Scholar 

  • Walsh FB (1947) Clinical neuro-ophthalmology. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  • Wassermann EM, Lisbanby SH (2001) Therapeutic application of repetitive transcranial stimulation: a review. Clin Neurophysiol 112:1367–1377

    PubMed  CAS  Google Scholar 

  • Wassermann EM, McShane LM, Hallett M, Cohen LG (1992) Non-invasive mapping of muscle representations in human motor cortex. Electroencephalogr Clin Neurophysiol 85:1–8

    PubMed  CAS  Google Scholar 

  • Wedeen VJ, Hagmann P, Tseng WY, Reese TG, Weisskoff RM (2005) Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magn Reson Med 54:1377–1386

    PubMed  Google Scholar 

  • Weigert C (1884) Ausführliche Beschreibung der in No. 2 dieser Zeitschrift erwähnten neuen Färbungsmethode für das Centralner­vensystem. Fortschr Med 2:190–191

    Google Scholar 

  • Weil AA (1928) A rapid method for staining myelin sheaths. Arch Neurol Psychiatr 20:392–393

    Google Scholar 

  • Weiss P, Hiscoe HB (1948) Experiments on the mechanism of nerve growth. J Exp Zool 107:315–395

    PubMed  CAS  Google Scholar 

  • Werhahn KJ, Kunesch E, Noachtar S, Benecke R, Classen J (1999) Differential effects on motor cortical inhibition induced by blockade of GABA uptake in humans. J Physiol (Lond) 517:591–597

    CAS  Google Scholar 

  • Wishart TM, Parson SH, Gillingwater TH (2006) Synaptic vulnerability in neurodegenerative disease. J Neuropathol Exp Neurol 65:733–739

    PubMed  CAS  Google Scholar 

  • Woelcke M (1942) Eine neue Methode der Markscheidenfärbung. J Physiol Neurol 51:199–202

    Google Scholar 

  • Woolsey CN, Erickson TC, Gilson WE (1979) Localization in somatic sensory and motor areas of human cerebral cortex as determined by direct recording of evoked potentials and electrical stimulation. J Neurosurg 51:476–506

    PubMed  CAS  Google Scholar 

  • Ziemann U (2003) Pharmacology of TMS. Suppl Clin Neurophysiol 56:226–231

    PubMed  Google Scholar 

  • Zilles K (1995) Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat (Lond) 187:515–537

    CAS  Google Scholar 

  • Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 2nd edn. Academic, San Diego, CA, pp 573–602

    Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat (Lond) 205:417–432

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. ten Donkelaar .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ten Donkelaar, H.J. (2011). Notes on Techniques. In: Clinical Neuroanatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19134-3_3

Download citation

Publish with us

Policies and ethics